S. Kim, Hyerim Park, Eunyu Choi, Young Han Kim, Dahyub Kim, H. Shim, Shin-Young Chung, Paul Jung
{"title":"Reliability Assessment of 3nm GAA Logic Technology Featuring Multi-Bridge-Channel FETs","authors":"S. Kim, Hyerim Park, Eunyu Choi, Young Han Kim, Dahyub Kim, H. Shim, Shin-Young Chung, Paul Jung","doi":"10.1109/IRPS48203.2023.10117953","DOIUrl":null,"url":null,"abstract":"In this paper, we report reliability assessment of the Multi-Bridge-Channel FET (MBCFET) adopted 3nm gate all around (GAA) logic technology in comparison with the 4 and 8nm FinFET logic technologies. A notable improvement on negative bias temperature instability (NBTI) of MBCFET is observed thanks to {100} dominance. Gate oxide time-dependent-dielectric-breakdown (TDDB) of the 3nm MBCFETs is comparable to that of the 4nm and 8nm FinFETs. Self-heat decoupled hot-carrier-injection (HCI) is similar to that of the 4nm FinFETs. Reduced conductance maximum (Gm, max) indicates that HCI degradation of the 3nm MBCFETs is dominated by interface damage mechanism. Middle-of-the-line (MOL) TDDB Weibull distribution shows that the 3nm MBCFETs have shorter time-to-failure (TTF) due to reduced lateral distance from gate to diffusion contact than other FinFET logic technologies. Due to an adoption of self-aligned-contact (SAC), the 3nm MBCFETs have similar behavior on MOL breakdown voltage (Vbd) at various diffusion contact misalignment to the 4nm FinFETs. The 3nm MBCFETs show antenna immunity up to 3x antenna ratio. Lastly, thermal cycle (TC) results indicate that the 3nm GAA logic technology has little lattice-related defects.","PeriodicalId":159030,"journal":{"name":"2023 IEEE International Reliability Physics Symposium (IRPS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS48203.2023.10117953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, we report reliability assessment of the Multi-Bridge-Channel FET (MBCFET) adopted 3nm gate all around (GAA) logic technology in comparison with the 4 and 8nm FinFET logic technologies. A notable improvement on negative bias temperature instability (NBTI) of MBCFET is observed thanks to {100} dominance. Gate oxide time-dependent-dielectric-breakdown (TDDB) of the 3nm MBCFETs is comparable to that of the 4nm and 8nm FinFETs. Self-heat decoupled hot-carrier-injection (HCI) is similar to that of the 4nm FinFETs. Reduced conductance maximum (Gm, max) indicates that HCI degradation of the 3nm MBCFETs is dominated by interface damage mechanism. Middle-of-the-line (MOL) TDDB Weibull distribution shows that the 3nm MBCFETs have shorter time-to-failure (TTF) due to reduced lateral distance from gate to diffusion contact than other FinFET logic technologies. Due to an adoption of self-aligned-contact (SAC), the 3nm MBCFETs have similar behavior on MOL breakdown voltage (Vbd) at various diffusion contact misalignment to the 4nm FinFETs. The 3nm MBCFETs show antenna immunity up to 3x antenna ratio. Lastly, thermal cycle (TC) results indicate that the 3nm GAA logic technology has little lattice-related defects.