NVM neuromorphic core with 64k-cell (256-by-256) phase change memory synaptic array with on-chip neuron circuits for continuous in-situ learning

Sangbum Kim, M. Ishii, S. Lewis, T. Perri, M. BrightSky, Wanki Kim, R. Jordan, G. Burr, N. Sosa, A. Ray, Jin P. Han, Christopher P. Miller, K. Hosokawa, C. Lam
{"title":"NVM neuromorphic core with 64k-cell (256-by-256) phase change memory synaptic array with on-chip neuron circuits for continuous in-situ learning","authors":"Sangbum Kim, M. Ishii, S. Lewis, T. Perri, M. BrightSky, Wanki Kim, R. Jordan, G. Burr, N. Sosa, A. Ray, Jin P. Han, Christopher P. Miller, K. Hosokawa, C. Lam","doi":"10.1109/IEDM.2015.7409716","DOIUrl":null,"url":null,"abstract":"We demonstrate a neuromorphic core with 64k-cell phase change memory (PCM) synaptic array (256 axons by 256 dendrites) with in-situ learning capability. 256 configurable on-chip neuron circuits perform leaky integrate and fire (LIF) and synaptic weight update based on spike-timing dependent plasticity (STDP). 2T-1R PCM unit cell design separates LIF and STDP learning paths, minimizing neuron circuit size. The circuit implementation of STDP learning algorithm along with 2T-1R structure enables both LIF and STDP learning to operate asynchronously and simultaneously within the array, avoiding additional complication and power consumption associated with timing schemes. We show hardware demonstration of in-situ learning with large representational capacity, enabled by large array size and analog synaptic weights of PCM cells.","PeriodicalId":336637,"journal":{"name":"2015 IEEE International Electron Devices Meeting (IEDM)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"152","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2015.7409716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 152

Abstract

We demonstrate a neuromorphic core with 64k-cell phase change memory (PCM) synaptic array (256 axons by 256 dendrites) with in-situ learning capability. 256 configurable on-chip neuron circuits perform leaky integrate and fire (LIF) and synaptic weight update based on spike-timing dependent plasticity (STDP). 2T-1R PCM unit cell design separates LIF and STDP learning paths, minimizing neuron circuit size. The circuit implementation of STDP learning algorithm along with 2T-1R structure enables both LIF and STDP learning to operate asynchronously and simultaneously within the array, avoiding additional complication and power consumption associated with timing schemes. We show hardware demonstration of in-situ learning with large representational capacity, enabled by large array size and analog synaptic weights of PCM cells.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有64k细胞(256 × 256)相变记忆突触阵列的NVM神经形态核心,具有片上神经元电路,用于连续原位学习
我们展示了一个具有64k细胞相变记忆(PCM)突触阵列(256个轴突,256个树突)的具有原位学习能力的神经形态核心。256个可配置的片上神经元电路基于峰值时间依赖的可塑性(STDP)进行泄漏集成和触发(LIF)和突触权更新。2T-1R PCM单元设计分离LIF和STDP学习路径,最大限度地减少神经元电路的大小。STDP学习算法的电路实现以及2T-1R结构使LIF和STDP学习在阵列内异步和同时运行,避免了与时序方案相关的额外复杂性和功耗。我们展示了具有大表征能力的原位学习的硬件演示,这是由PCM细胞的大阵列尺寸和模拟突触权重实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of the potentialities of Vertical Resistive RAM (VRRAM) for neuromorphic applications Hot carrier aging and its variation under use-bias: Kinetics, prediction, impact on Vdd and SRAM Robust and compact key generator using physically unclonable function based on logic-transistor-compatible poly-crystalline-Si channel FinFET technology High performance dual-gate ISFET with non-ideal effect reduction schemes in a SOI-CMOS bioelectrical SoC Physics-based compact modeling framework for state-of-the-art and emerging STT-MRAM technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1