150 GHz FMAX with high drain breakdown voltage immunity by multi gate oxide dual work-function (MGO-DWF)-MO SFET

T. Miyata, H. Tanaka, K. Kagimoto, M. Kamiyashiki, M. Kamimura, A. Hidaka, M. Goto, K. Adachi, A. Hokazono, T. Ohguro, K. Nagaoka, Y. Watanabe, S. Hirooka, Y. Ito, S. Kawanaka, K. Ishimaru
{"title":"150 GHz FMAX with high drain breakdown voltage immunity by multi gate oxide dual work-function (MGO-DWF)-MO SFET","authors":"T. Miyata, H. Tanaka, K. Kagimoto, M. Kamiyashiki, M. Kamimura, A. Hidaka, M. Goto, K. Adachi, A. Hokazono, T. Ohguro, K. Nagaoka, Y. Watanabe, S. Hirooka, Y. Ito, S. Kawanaka, K. Ishimaru","doi":"10.1109/IEDM.2015.7409769","DOIUrl":null,"url":null,"abstract":"We propose Multi Gate Oxide - Dual Work-Function (MGO-DWF)-MOSFET which is suitable for low power AB-class RF power amplifier (RF PA). This was examined for the first time by comparing with a standard Cascode connection circuitry composed of LV- and HVMOSFETs. Dramatically improved FMAX (150 GHz) with sufficient drain break-down voltage (VBD) was experimentally confirmed in a practical device structure. MGO-DWF-MOSFET has multiple roles in a unit device such as LV-MOSFET in source side regions and HV-MOSFET in drain side regions. This distinctive structure enables the reduction of the device area and a gate capacitance (CG) with a higher transconductance (GM) and the suppression of drain conductance (GDS). Enhancement of FMAX, in other words, DC operation current reduction is achieved at a given operation point. This indicates that MGO-DWF MOSFET is advantageous for low power amplifier circuitry applications, typically for RF PA in internet of things (IoT) products.","PeriodicalId":336637,"journal":{"name":"2015 IEEE International Electron Devices Meeting (IEDM)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2015.7409769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We propose Multi Gate Oxide - Dual Work-Function (MGO-DWF)-MOSFET which is suitable for low power AB-class RF power amplifier (RF PA). This was examined for the first time by comparing with a standard Cascode connection circuitry composed of LV- and HVMOSFETs. Dramatically improved FMAX (150 GHz) with sufficient drain break-down voltage (VBD) was experimentally confirmed in a practical device structure. MGO-DWF-MOSFET has multiple roles in a unit device such as LV-MOSFET in source side regions and HV-MOSFET in drain side regions. This distinctive structure enables the reduction of the device area and a gate capacitance (CG) with a higher transconductance (GM) and the suppression of drain conductance (GDS). Enhancement of FMAX, in other words, DC operation current reduction is achieved at a given operation point. This indicates that MGO-DWF MOSFET is advantageous for low power amplifier circuitry applications, typically for RF PA in internet of things (IoT) products.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用多栅极氧化物双工作功能(MGO-DWF)-MO场效应晶体管,具有高抗漏击穿电压的150 GHz FMAX
我们提出了一种适用于低功率ab级射频功率放大器(RF PA)的多栅氧化-双工作功能(MGO-DWF)- mosfet。这是第一次通过与由低压和高压mosfet组成的标准级联电路进行比较来检验。在实际器件结构中,通过实验验证了具有足够漏极击穿电压(VBD)的显著改进FMAX (150 GHz)。MGO-DWF-MOSFET在单元器件中具有多种作用,例如源侧的LV-MOSFET和漏侧的HV-MOSFET。这种独特的结构能够减少器件面积和栅极电容(CG),具有更高的跨导(GM)和抑制漏极电导(GDS)。FMAX的增强,即在给定的工作点上实现直流工作电流的减小。这表明MGO-DWF MOSFET对于低功率放大器电路应用是有利的,通常用于物联网(IoT)产品中的RF PA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of the potentialities of Vertical Resistive RAM (VRRAM) for neuromorphic applications Hot carrier aging and its variation under use-bias: Kinetics, prediction, impact on Vdd and SRAM Robust and compact key generator using physically unclonable function based on logic-transistor-compatible poly-crystalline-Si channel FinFET technology High performance dual-gate ISFET with non-ideal effect reduction schemes in a SOI-CMOS bioelectrical SoC Physics-based compact modeling framework for state-of-the-art and emerging STT-MRAM technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1