M. Sung, S. Jang, Hyunjin Lee, Y. Ji, Jae-Il Kang, Tae-Oh Jung, T. Ahn, Y. Son, Hyungchul Kim, Sun-Woo Lee, Seungmin Lee, Jung-Hak Lee, S. Baek, Eun-Hyup Doh, Heung-Jae Cho, T. Jang, I. Jang, Jae-Hwan Han, Kyung-Bo Ko, Yu-Jun Lee, Su-Bum Shin, Jae-Seon Yu, S. Cho, Ji-Hye Han, Dong-Kyun Kang, Jinsung Kim, Jae-Sang Lee, Keundo Ban, S. Yeom, H. Nam, Dong-Kyu Lee, M. Jeong, Byungil Kwak, Jeongsoo Park, K. Choi, Sung-Kye Park, N. Kwak, Sung-Joo Hong
{"title":"Gate-first high-k/metal gate DRAM technology for low power and high performance products","authors":"M. Sung, S. Jang, Hyunjin Lee, Y. Ji, Jae-Il Kang, Tae-Oh Jung, T. Ahn, Y. Son, Hyungchul Kim, Sun-Woo Lee, Seungmin Lee, Jung-Hak Lee, S. Baek, Eun-Hyup Doh, Heung-Jae Cho, T. Jang, I. Jang, Jae-Hwan Han, Kyung-Bo Ko, Yu-Jun Lee, Su-Bum Shin, Jae-Seon Yu, S. Cho, Ji-Hye Han, Dong-Kyun Kang, Jinsung Kim, Jae-Sang Lee, Keundo Ban, S. Yeom, H. Nam, Dong-Kyu Lee, M. Jeong, Byungil Kwak, Jeongsoo Park, K. Choi, Sung-Kye Park, N. Kwak, Sung-Joo Hong","doi":"10.1109/IEDM.2015.7409775","DOIUrl":null,"url":null,"abstract":"It is the first time that the high-k/metal gate technology was used at peripheral transistors for fully integrated and functioning DRAM. For cost effective DRAM technology, capping nitride spacer was used on cell bit-line scheme, and single work function metal gate was employed without strain technology. The threshold voltage was controlled by using single TiN metal gate with La2O3 and SiGe/Si epi technology. The optimized DRAM high-k/metal gate peripheral transistors showed current gains of 65%/55% and DIBL improvements of 52%/46% for nMOSFET and pMOSFET, respectively. The results in process yield, performance, and reliability characteristics of the technology on 4Gb DRAM have shown that the gate-first high-k/metal gate DRAM technology can be regarded as one of the major candidates for next-generation low power DRAM products.","PeriodicalId":336637,"journal":{"name":"2015 IEEE International Electron Devices Meeting (IEDM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2015.7409775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
It is the first time that the high-k/metal gate technology was used at peripheral transistors for fully integrated and functioning DRAM. For cost effective DRAM technology, capping nitride spacer was used on cell bit-line scheme, and single work function metal gate was employed without strain technology. The threshold voltage was controlled by using single TiN metal gate with La2O3 and SiGe/Si epi technology. The optimized DRAM high-k/metal gate peripheral transistors showed current gains of 65%/55% and DIBL improvements of 52%/46% for nMOSFET and pMOSFET, respectively. The results in process yield, performance, and reliability characteristics of the technology on 4Gb DRAM have shown that the gate-first high-k/metal gate DRAM technology can be regarded as one of the major candidates for next-generation low power DRAM products.