M. Prezioso, I. Kataeva, F. Merrikh-Bayat, B. Hoskins, G. Adam, T. Sota, K. Likharev, D. Strukov
{"title":"Modeling and implementation of firing-rate neuromorphic-network classifiers with bilayer Pt/Al2O3/TiO2−x/Pt Memristors","authors":"M. Prezioso, I. Kataeva, F. Merrikh-Bayat, B. Hoskins, G. Adam, T. Sota, K. Likharev, D. Strukov","doi":"10.1109/IEDM.2015.7409719","DOIUrl":null,"url":null,"abstract":"Neuromorphic pattern classifiers were implemented, for the first time, using transistor-free integrated crossbar circuits with bilayer metal-oxide memristors. 10×6- and 10×8-crosspoint neuromorphic networks were trained in-situ using a Manhattan-Rule algorithm to separate a set of 3×3 binary images: into 3 classes using the batch-mode training, and into 4 classes using the stochastic-mode training, respectively. Simulation of much larger, multilayer neural network classifiers based on such technology has sown that their fidelity may be on a par with the state-of-the-art results for software-implemented networks.","PeriodicalId":336637,"journal":{"name":"2015 IEEE International Electron Devices Meeting (IEDM)","volume":"26 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2015.7409719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47
Abstract
Neuromorphic pattern classifiers were implemented, for the first time, using transistor-free integrated crossbar circuits with bilayer metal-oxide memristors. 10×6- and 10×8-crosspoint neuromorphic networks were trained in-situ using a Manhattan-Rule algorithm to separate a set of 3×3 binary images: into 3 classes using the batch-mode training, and into 4 classes using the stochastic-mode training, respectively. Simulation of much larger, multilayer neural network classifiers based on such technology has sown that their fidelity may be on a par with the state-of-the-art results for software-implemented networks.