Optically-driven actuator using photo-induced phase-transition material

T. Ikehara, M. Tanaki, S. Shimada, H. Matsuda
{"title":"Optically-driven actuator using photo-induced phase-transition material","authors":"T. Ikehara, M. Tanaki, S. Shimada, H. Matsuda","doi":"10.1109/MEMSYS.2001.906527","DOIUrl":null,"url":null,"abstract":"The authors propose a new optically driven actuator which utilizes photo-induced phase-transition (PIPT) material. This actuator is expected to be useful for micromechanical systems, since it provides a wireless energy supply by light. In these PIPT materials the material phase is changed by irradiation of light, as well as by temperature or external fields. In this report, a kind of polydiacetylene (PDA) substituted with alkyl-urethane is investigated. This material is known to exhibit reversible PIPT around 125/spl deg/C between the 'blue' phase and 'red' phase. The authors measured the induced macroscopic elongation of PDA crystal using a displacement meter. The induced strains due to thermal phase transition were measured to be 2%, 0.03%, and 0.9% at 125/spl deg/C for the a-, b-, and c-axes, respectively. These values are larger than that of the piezoelectric or thermal-expansion materials conventionally used for microactuators. Material deformation due to light-pulse irradiation was demonstrated for the first time. The observed bending was explained by bimorph formation induced by phase transition at the irradiated surface.","PeriodicalId":311365,"journal":{"name":"Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090)","volume":"11 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2001.906527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The authors propose a new optically driven actuator which utilizes photo-induced phase-transition (PIPT) material. This actuator is expected to be useful for micromechanical systems, since it provides a wireless energy supply by light. In these PIPT materials the material phase is changed by irradiation of light, as well as by temperature or external fields. In this report, a kind of polydiacetylene (PDA) substituted with alkyl-urethane is investigated. This material is known to exhibit reversible PIPT around 125/spl deg/C between the 'blue' phase and 'red' phase. The authors measured the induced macroscopic elongation of PDA crystal using a displacement meter. The induced strains due to thermal phase transition were measured to be 2%, 0.03%, and 0.9% at 125/spl deg/C for the a-, b-, and c-axes, respectively. These values are larger than that of the piezoelectric or thermal-expansion materials conventionally used for microactuators. Material deformation due to light-pulse irradiation was demonstrated for the first time. The observed bending was explained by bimorph formation induced by phase transition at the irradiated surface.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用光致相变材料的光驱动驱动器
提出了一种利用光致相变(PIPT)材料的新型光驱动驱动器。这种驱动器有望用于微机械系统,因为它通过光提供无线能量供应。在这些PIPT材料中,材料相位通过光的照射以及温度或外部场而改变。本文研究了一种以烷基脲烷取代的聚二乙炔(PDA)。已知这种材料在“蓝”相和“红”相之间表现出125/spl℃左右的可逆PIPT。用位移计测量了PDA晶体的诱导宏观伸长。在125/spl℃下,a轴、b轴和C轴的热相变诱导菌株分别为2%、0.03%和0.9%。这些值比通常用于微致动器的压电或热膨胀材料的值大。首次证明了光脉冲辐照引起的材料变形。观察到的弯曲可以用辐照表面相变引起的双晶形成来解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Electrostatic impact-drive microactuator High-density 3D packaging technology for CCD micro-camera system module High throughput optical near-field aperture array for data storage Device transplant of optical MEMS for out of plane beam steering Performance of a MEMS based micro capillary pumped loop for chip-level temperature control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1