First foundry platform of complementary tunnel-FETs in CMOS baseline technology for ultralow-power IoT applications: Manufacturability, variability and technology roadmap

Qianqian Huang, Rundong Jia, Cheng Chen, Hao Zhu, Lingyi Guo, Junyao Wang, Jiaxin Wang, Chunlei Wu, Runsheng Wang, Weihai Bu, Jin Kang, Wenbo Wang, Hanming Wu, Shiuh-Wuu Lee, Yangyuan Wang, Ru Huang
{"title":"First foundry platform of complementary tunnel-FETs in CMOS baseline technology for ultralow-power IoT applications: Manufacturability, variability and technology roadmap","authors":"Qianqian Huang, Rundong Jia, Cheng Chen, Hao Zhu, Lingyi Guo, Junyao Wang, Jiaxin Wang, Chunlei Wu, Runsheng Wang, Weihai Bu, Jin Kang, Wenbo Wang, Hanming Wu, Shiuh-Wuu Lee, Yangyuan Wang, Ru Huang","doi":"10.1109/IEDM.2015.7409756","DOIUrl":null,"url":null,"abstract":"We have first manufactured Complementary Tunnel-FETs (C-TFETs) in standard 12-inch CMOS foundry. With abrupt tunnel junction consideration for improved TFET performance, technology of monolithically integrating C-TFET with CMOS is developed. Planar Si C-TFET inverter is also demonstrated, indicating a new electrical isolation requirement between neighboring devices for practical C-TFET integration on bulk substrate. For high-volume production, the variability of C-TFETs are experimentally investigated, demonstrating an intrinsic trade-off between performance enhancement and variability suppression induced by dominant variation source in traditional TFETs, which is mainly impacted by the band-to-band tunneling generation area. By new TFET device design, improved performance and variability simultaneously are experimentally achieved, and circuit-level implementation shows significant operation speed enhancement (up to 93%) and energy reduction (by 66%) at VDD of 0.4V, as well as remarkably suppressed variation, indicating its great potential for ultralow-power applications.","PeriodicalId":336637,"journal":{"name":"2015 IEEE International Electron Devices Meeting (IEDM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2015.7409756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

We have first manufactured Complementary Tunnel-FETs (C-TFETs) in standard 12-inch CMOS foundry. With abrupt tunnel junction consideration for improved TFET performance, technology of monolithically integrating C-TFET with CMOS is developed. Planar Si C-TFET inverter is also demonstrated, indicating a new electrical isolation requirement between neighboring devices for practical C-TFET integration on bulk substrate. For high-volume production, the variability of C-TFETs are experimentally investigated, demonstrating an intrinsic trade-off between performance enhancement and variability suppression induced by dominant variation source in traditional TFETs, which is mainly impacted by the band-to-band tunneling generation area. By new TFET device design, improved performance and variability simultaneously are experimentally achieved, and circuit-level implementation shows significant operation speed enhancement (up to 93%) and energy reduction (by 66%) at VDD of 0.4V, as well as remarkably suppressed variation, indicating its great potential for ultralow-power applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超低功耗物联网应用CMOS基线技术互补隧道场效应管的首个代工平台:可制造性、可变性和技术路线图
我们首次在标准的12英寸CMOS代工厂制造了互补隧道fet (c - tfet)。为了提高ttfet的性能,考虑到突变隧道结,开发了c - ttfet与CMOS的单片集成技术。平面硅C-TFET逆变器也被展示,表明相邻器件之间的新的电气隔离要求,以实际集成在大块衬底上的C-TFET。为了大批量生产,实验研究了c - tfet的可变性,证明了传统tfet中主要受带间隧穿产生面积影响的主要变化源导致的性能增强和可变性抑制之间的内在权衡。通过新的ttfet器件设计,实验上同时实现了性能和可变性的改善,并且在VDD为0.4V时,电路级实现显示出显着的运行速度提高(高达93%)和能量降低(66%),并且显著抑制了变化,表明其在超低功耗应用中的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of the potentialities of Vertical Resistive RAM (VRRAM) for neuromorphic applications Hot carrier aging and its variation under use-bias: Kinetics, prediction, impact on Vdd and SRAM Robust and compact key generator using physically unclonable function based on logic-transistor-compatible poly-crystalline-Si channel FinFET technology High performance dual-gate ISFET with non-ideal effect reduction schemes in a SOI-CMOS bioelectrical SoC Physics-based compact modeling framework for state-of-the-art and emerging STT-MRAM technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1