On silicon-based speed path identification

Leonard Lee, Li-C. Wang, Praveen Parvathala, T. M. Mak
{"title":"On silicon-based speed path identification","authors":"Leonard Lee, Li-C. Wang, Praveen Parvathala, T. M. Mak","doi":"10.1109/VTS.2005.61","DOIUrl":null,"url":null,"abstract":"Speed path identification is an indispensable step for pushing the design timing wall and for developing the final speed binning strategy in production test. For complex high-performance designs, pre-silicon timing tools have so far not been able to deliver satisfactory results in predicting the actual speed limiting paths on the silicon. The actual speed paths are mostly uncovered through test and silicon debug, where tremendous manual effort is involved. This paper presents a novel approach as the first step for automating the speed path identification process. Our approach is silicon-based, meaning that timing information is extracted through testing of silicon sample chips. We call this step silicon learning. Based on silicon learning, we present an iterative flow for speed path identification. Experimental results are presented to explain the new methodologies and to demonstrate the effectiveness of our techniques.","PeriodicalId":268324,"journal":{"name":"23rd IEEE VLSI Test Symposium (VTS'05)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"23rd IEEE VLSI Test Symposium (VTS'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTS.2005.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

Speed path identification is an indispensable step for pushing the design timing wall and for developing the final speed binning strategy in production test. For complex high-performance designs, pre-silicon timing tools have so far not been able to deliver satisfactory results in predicting the actual speed limiting paths on the silicon. The actual speed paths are mostly uncovered through test and silicon debug, where tremendous manual effort is involved. This paper presents a novel approach as the first step for automating the speed path identification process. Our approach is silicon-based, meaning that timing information is extracted through testing of silicon sample chips. We call this step silicon learning. Based on silicon learning, we present an iterative flow for speed path identification. Experimental results are presented to explain the new methodologies and to demonstrate the effectiveness of our techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于硅的速度路径识别
在生产试验中,速度路径识别是推进设计时序墙和制定最终速度控制策略的必要步骤。对于复杂的高性能设计,预硅定时工具到目前为止还不能在预测硅上的实际限速路径方面提供令人满意的结果。实际的速度路径主要是通过测试和芯片调试发现的,其中涉及大量的手工工作。本文提出了一种新的方法作为速度路径识别过程自动化的第一步。我们的方法是基于硅的,这意味着时间信息是通过测试硅样品芯片提取的。我们称之为“硅学习”。基于硅学习,提出了一种速度路径识别的迭代流程。实验结果解释了新的方法,并证明了我们的技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An economic selecting model for DFT strategies Defect screening using independent component analysis on I/sub DDQ/ Experimental evaluation of bridge patterns for a high performance microprocessor Production test methods for measuring 'out-of-band' interference of ultra wide band (UWB) devices Diagnosis of the failing component in RF receivers through adaptive full-path measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1