An electrostatically-actuated MEMS switch for power applications

Jo-ey Wong, Jeffrey H. Lang, Martin, Schmidt
{"title":"An electrostatically-actuated MEMS switch for power applications","authors":"Jo-ey Wong, Jeffrey H. Lang, Martin, Schmidt","doi":"10.1109/MEMSYS.2000.838592","DOIUrl":null,"url":null,"abstract":"This paper presents the design, analysis, fabrication, and testing of an electrostatically-actuated MEMS power switch. The device can be switched electrostatically (20 V), pneumatically (1200 Pa), or through combined actuation. Prototype switches carry currents in excess of 400 mA in either current direction with a contact resistance as low as 14 m/spl Omega/. Their off-state resistance is higher than the 30 M/spl Omega/ limit of the test equipment. Breakdown voltages of 300 V have been achieved across their small air gaps. Their nominal switching time is 20 ms. Extended lifetime testing has not been carried out but our tests to date show that the prototype switches operate more than 4000 cycles without significant degradation in their contact resistance. Finally, a protective switching scheme is proposed to minimize contact wear due to arcing during switch opening and closing.","PeriodicalId":251857,"journal":{"name":"Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2000.838592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

Abstract

This paper presents the design, analysis, fabrication, and testing of an electrostatically-actuated MEMS power switch. The device can be switched electrostatically (20 V), pneumatically (1200 Pa), or through combined actuation. Prototype switches carry currents in excess of 400 mA in either current direction with a contact resistance as low as 14 m/spl Omega/. Their off-state resistance is higher than the 30 M/spl Omega/ limit of the test equipment. Breakdown voltages of 300 V have been achieved across their small air gaps. Their nominal switching time is 20 ms. Extended lifetime testing has not been carried out but our tests to date show that the prototype switches operate more than 4000 cycles without significant degradation in their contact resistance. Finally, a protective switching scheme is proposed to minimize contact wear due to arcing during switch opening and closing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于电源应用的静电驱动MEMS开关
本文介绍了一种静电驱动的MEMS电源开关的设计、分析、制造和测试。该装置可以通过静电(20v),气动(1200pa)或组合驱动进行切换。原型开关在任何电流方向上都携带超过400 mA的电流,接触电阻低至14 m/spl ω /。其脱态电阻高于测试设备的30m /spl ω /限值。通过它们的小气隙,击穿电压达到300 V。它们的标称开关时间为20毫秒。延长寿命测试尚未进行,但我们迄今为止的测试表明,原型开关运行超过4000次循环,其接触电阻没有明显下降。最后,提出了一种保护开关方案,以减少开关开闭过程中电弧引起的接触磨损。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A normally closed in-channel micro check valve Direct writing for three-dimensional microfabrication using synchrotron radiation etching Development of chain-type micromachine for inspection of outer tube surfaces (basic performance of the 1st prototype) An electrostatically excited 2D-micro-scanning-mirror with an in-plane configuration of the driving electrodes Glass- to-glass anodic bonding for high vacuum packaging of microelectronics and its stability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1