Quantitative analysis of 3D seam shape according to easing conditions for efficient sewing using muslin

IF 2.3 4区 管理学 Q1 MATERIALS SCIENCE, TEXTILES Fashion and Textiles Pub Date : 2023-12-06 DOI:10.1186/s40691-023-00364-6
Hyojeong Lee, Sunhee Park, Yejin Lee
{"title":"Quantitative analysis of 3D seam shape according to easing conditions for efficient sewing using muslin","authors":"Hyojeong Lee,&nbsp;Sunhee Park,&nbsp;Yejin Lee","doi":"10.1186/s40691-023-00364-6","DOIUrl":null,"url":null,"abstract":"<div><p>This study quantitatively analyzes the data of 3D seam shapes that alter according to easing conditions. By numerically approaching easing, which is only taught using traditional methods, this study suggests a method of analyzing the changes in 3D surface area, volume, and seam shape. The 3D data of the completed samples were obtained through a 3D scanner, the solid shapes were analyzed using reverse engineering, and a new program was developed. The shape, area, and volume of the data were analyzed, and the deformation rate was measured using the radius of curvature. Linear seam lines were bent because of the mechanical pushing inflicted by the garment with easing. The area increased dramatically as the ease amount increased when the seam lines were short, whereas it was relatively unaffected when seam lines were long. The radii of curvature for curved seam lines show that, for all samples, the waveform is high at the center where the seam is. The peak value did not increase for curved seams when the ease amount increased. The sum of the areas increased with a larger radius of curvature for the curved seams. It is a crucial reference for easing in garments regarding quantitative changes in seam shapes and volumes according to easing type and amount.</p></div>","PeriodicalId":555,"journal":{"name":"Fashion and Textiles","volume":"10 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://fashionandtextiles.springeropen.com/counter/pdf/10.1186/s40691-023-00364-6","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fashion and Textiles","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40691-023-00364-6","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

Abstract

This study quantitatively analyzes the data of 3D seam shapes that alter according to easing conditions. By numerically approaching easing, which is only taught using traditional methods, this study suggests a method of analyzing the changes in 3D surface area, volume, and seam shape. The 3D data of the completed samples were obtained through a 3D scanner, the solid shapes were analyzed using reverse engineering, and a new program was developed. The shape, area, and volume of the data were analyzed, and the deformation rate was measured using the radius of curvature. Linear seam lines were bent because of the mechanical pushing inflicted by the garment with easing. The area increased dramatically as the ease amount increased when the seam lines were short, whereas it was relatively unaffected when seam lines were long. The radii of curvature for curved seam lines show that, for all samples, the waveform is high at the center where the seam is. The peak value did not increase for curved seams when the ease amount increased. The sum of the areas increased with a larger radius of curvature for the curved seams. It is a crucial reference for easing in garments regarding quantitative changes in seam shapes and volumes according to easing type and amount.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用薄纱根据缓和条件定量分析三维缝形,以提高缝纫效率
本研究定量分析了随放宽条件变化的三维接缝形状数据。通过对传统方法中仅有的缓和进行数值化处理,本研究提出了一种分析三维表面积、体积和接缝形状变化的方法。通过三维扫描仪获得了已完成样品的三维数据,利用逆向工程分析了实体形状,并开发了一个新程序。对数据的形状、面积和体积进行了分析,并利用曲率半径测量了变形率。线性接缝线弯曲的原因是服装在放宽时产生的机械推力。缝线短时,随着缓和量的增加,面积急剧增大,而缝线长时,面积相对不受影响。弧形接缝线的曲率半径显示,对于所有样本,接缝中心的波形都很高。弧形接缝的峰值并没有随着疏松度的增加而增加。曲线接缝的曲率半径越大,面积总和越大。根据缓和类型和缓和量对接缝形状和体积的定量变化提供了重要的服装缓和参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fashion and Textiles
Fashion and Textiles Business, Management and Accounting-Marketing
CiteScore
4.40
自引率
4.20%
发文量
37
审稿时长
13 weeks
期刊介绍: Fashion and Textiles aims to advance knowledge and to seek new perspectives in the fashion and textiles industry worldwide. We welcome original research articles, reviews, case studies, book reviews and letters to the editor. The scope of the journal includes the following four technical research divisions: Textile Science and Technology: Textile Material Science and Technology; Dyeing and Finishing; Smart and Intelligent Textiles Clothing Science and Technology: Physiology of Clothing/Textile Products; Protective clothing ; Smart and Intelligent clothing; Sportswear; Mass customization ; Apparel manufacturing Economics of Clothing and Textiles/Fashion Business: Management of the Clothing and Textiles Industry; Merchandising; Retailing; Fashion Marketing; Consumer Behavior; Socio-psychology of Fashion Fashion Design and Cultural Study on Fashion: Aesthetic Aspects of Fashion Product or Design Process; Textiles/Clothing/Fashion Design; Fashion Trend; History of Fashion; Costume or Dress; Fashion Theory; Fashion journalism; Fashion exhibition.
期刊最新文献
Application and evaluation knitted electrodes for body signal measurement using adhesive intermediate electrode Multilayer textile-based concept for non-invasive biosensor platform Color fastness and antimicrobial activity of Gardenia jasminoides extract against antimicrobial-resistant Staphylococcus aureus Analysis of fabric movement and dust removal performance due to twist motion in a clothing care system Analysis of plantar pressure of midsole prepared by 3d printed biomimetic structures with different densities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1