Alexandre Causse, Loïc Bernard, Sylvain Collardey, Ala Sharaiha
{"title":"Cylindrical conformation and miniaturization of cavity-backed magnetoelectric antenna with an outer Γ-shaped probe","authors":"Alexandre Causse, Loïc Bernard, Sylvain Collardey, Ala Sharaiha","doi":"10.1017/s1759078723001265","DOIUrl":null,"url":null,"abstract":"<p>In this article, the cylindrical conformation of a linearly polarized cavity-backed magnetoelectric (ME) antenna is studied. Starting from a planar ME antenna presenting a wide bandwidth due to a specific design of its feeding probe, the impact of conformation is shown; the coupling between the ME dipole and the cavity walls is demonstrated to be the key element to keep a wideband behavior. Conformal antennas offering the same impedance bandwidth as the planar antenna are presented operating at Global Navigation Satellite System frequencies (1.164–1.61 GHz). As a result of the conformation, the antenna size has to be reduced to maintain the coupling and a wideband behavior. A prototype conformed to a 44-mm radius cylinder was built using low-cost additive manufacturing. External dimensions of 62 × 62 × 35 mm<span>3</span> (0.285 × 0.285 × 0.16λ<span>0</span><span>3</span>, where λ<span>0</span> is the wavelength at 1.38 GHz) were obtained, showing a ground plane area reduction of 46% compared to the planar antenna with the same materials. The conformal antenna also exhibits very steady radiation properties with a gain of around 4.5 dBi and a very similar and stable 3 dB beamwidth around 113° in E- and H-planes. A relatively good agreement is found between measurements and simulation.</p>","PeriodicalId":49052,"journal":{"name":"International Journal of Microwave and Wireless Technologies","volume":"33 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave and Wireless Technologies","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s1759078723001265","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, the cylindrical conformation of a linearly polarized cavity-backed magnetoelectric (ME) antenna is studied. Starting from a planar ME antenna presenting a wide bandwidth due to a specific design of its feeding probe, the impact of conformation is shown; the coupling between the ME dipole and the cavity walls is demonstrated to be the key element to keep a wideband behavior. Conformal antennas offering the same impedance bandwidth as the planar antenna are presented operating at Global Navigation Satellite System frequencies (1.164–1.61 GHz). As a result of the conformation, the antenna size has to be reduced to maintain the coupling and a wideband behavior. A prototype conformed to a 44-mm radius cylinder was built using low-cost additive manufacturing. External dimensions of 62 × 62 × 35 mm3 (0.285 × 0.285 × 0.16λ03, where λ0 is the wavelength at 1.38 GHz) were obtained, showing a ground plane area reduction of 46% compared to the planar antenna with the same materials. The conformal antenna also exhibits very steady radiation properties with a gain of around 4.5 dBi and a very similar and stable 3 dB beamwidth around 113° in E- and H-planes. A relatively good agreement is found between measurements and simulation.
期刊介绍:
The prime objective of the International Journal of Microwave and Wireless Technologies is to enhance the communication between microwave engineers throughout the world. It is therefore interdisciplinary and application oriented, providing a platform for the microwave industry. Coverage includes: applied electromagnetic field theory (antennas, transmission lines and waveguides), components (passive structures and semiconductor device technologies), analogue and mixed-signal circuits, systems, optical-microwave interactions, electromagnetic compatibility, industrial applications, biological effects and medical applications.