Qian Ma, Xinxin Gao, Ze Gu, Che Liu, Lianlin Li, Jian Wei You, Tie Jun Cui
{"title":"Intelligent neuromorphic computing based on nanophotonics and metamaterials","authors":"Qian Ma, Xinxin Gao, Ze Gu, Che Liu, Lianlin Li, Jian Wei You, Tie Jun Cui","doi":"10.1557/s43579-024-00520-z","DOIUrl":null,"url":null,"abstract":"<p>With the rapid development of artificial intelligence and computing chips approaching the bottleneck of power consumption and computing power, the research on intelligent computing hardware with high speed and high energy efficiency is an important trend. Recently, neuromorphic computing represented by photonic circuit neural networks and all-optical diffraction neural networks has attracted widespread attention due to their ultra-fast and ultra-efficient computing architectures. In this perspective, we first review some representative works and introduce them through two main lines of planar photonic circuit neural networks and three-dimensional diffraction neural networks to compare their characteristics and performance. We further discuss programmable designs for neuromorphic computing hardware, which bring it closer to general-purpose computing devices. Besides intelligent neural networks in the optical band, we also review the development and application of the diffractive neural networks in the microwave band, showing their programmable capabilities. Finally, we present the future directions and development trends of intelligent neuromorphic computing and its potential applications in wireless communications, information processing, and sensing.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"242 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Communications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43579-024-00520-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid development of artificial intelligence and computing chips approaching the bottleneck of power consumption and computing power, the research on intelligent computing hardware with high speed and high energy efficiency is an important trend. Recently, neuromorphic computing represented by photonic circuit neural networks and all-optical diffraction neural networks has attracted widespread attention due to their ultra-fast and ultra-efficient computing architectures. In this perspective, we first review some representative works and introduce them through two main lines of planar photonic circuit neural networks and three-dimensional diffraction neural networks to compare their characteristics and performance. We further discuss programmable designs for neuromorphic computing hardware, which bring it closer to general-purpose computing devices. Besides intelligent neural networks in the optical band, we also review the development and application of the diffractive neural networks in the microwave band, showing their programmable capabilities. Finally, we present the future directions and development trends of intelligent neuromorphic computing and its potential applications in wireless communications, information processing, and sensing.
期刊介绍:
MRS Communications is a full-color, high-impact journal focused on rapid publication of completed research with broad appeal to the materials community. MRS Communications offers a rapid but rigorous peer-review process and time to publication. Leveraging its access to the far-reaching technical expertise of MRS members and leading materials researchers from around the world, the journal boasts an experienced and highly respected board of principal editors and reviewers.