{"title":"Acoustic and Text Features Analysis for Adult ADHD Screening: A Data-Driven Approach Utilizing DIVA Interview","authors":"Shuanglin Li;Rajesh Nair;Syed Mohsen Naqvi","doi":"10.1109/JTEHM.2024.3369764","DOIUrl":null,"url":null,"abstract":"Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder commonly seen in childhood that leads to behavioural changes in social development and communication patterns, often continues into undiagnosed adulthood due to a global shortage of psychiatrists, resulting in delayed diagnoses with lasting consequences on individual’s well-being and the societal impact. Recently, machine learning methodologies have been incorporated into healthcare systems to facilitate the diagnosis and enhance the potential prediction of treatment outcomes for mental health conditions. In ADHD detection, the previous research focused on utilizing functional magnetic resonance imaging (fMRI) or Electroencephalography (EEG) signals, which require costly equipment and trained personnel for data collection. In recent years, speech and text modalities have garnered increasing attention due to their cost-effectiveness and non-wearable sensing in data collection. In this research, conducted in collaboration with the Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust, we gathered audio data from both ADHD patients and normal controls based on the clinically popular Diagnostic Interview for ADHD in adults (DIVA). Subsequently, we transformed the speech data into text modalities through the utilization of the Google Cloud Speech API. We extracted both acoustic and text features from the data, encompassing traditional acoustic features (e.g., MFCC), specialized feature sets (e.g., eGeMAPS), as well as deep-learned linguistic and semantic features derived from pre-trained deep learning models. These features are employed in conjunction with a support vector machine for ADHD classification, yielding promising outcomes in the utilization of audio and text data for effective adult ADHD screening. Clinical impact: This research introduces a transformative approach in ADHD diagnosis, employing speech and text analysis to facilitate early and more accessible detection, particularly beneficial in areas with limited psychiatric resources. Clinical and Translational Impact Statement: The successful application of machine learning techniques in analyzing audio and text data for ADHD screening represents a significant advancement in mental health diagnostics, paving the way for its integration into clinical settings and potentially improving patient outcomes on a broader scale.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"359-370"},"PeriodicalIF":3.7000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10445184","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10445184/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder commonly seen in childhood that leads to behavioural changes in social development and communication patterns, often continues into undiagnosed adulthood due to a global shortage of psychiatrists, resulting in delayed diagnoses with lasting consequences on individual’s well-being and the societal impact. Recently, machine learning methodologies have been incorporated into healthcare systems to facilitate the diagnosis and enhance the potential prediction of treatment outcomes for mental health conditions. In ADHD detection, the previous research focused on utilizing functional magnetic resonance imaging (fMRI) or Electroencephalography (EEG) signals, which require costly equipment and trained personnel for data collection. In recent years, speech and text modalities have garnered increasing attention due to their cost-effectiveness and non-wearable sensing in data collection. In this research, conducted in collaboration with the Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust, we gathered audio data from both ADHD patients and normal controls based on the clinically popular Diagnostic Interview for ADHD in adults (DIVA). Subsequently, we transformed the speech data into text modalities through the utilization of the Google Cloud Speech API. We extracted both acoustic and text features from the data, encompassing traditional acoustic features (e.g., MFCC), specialized feature sets (e.g., eGeMAPS), as well as deep-learned linguistic and semantic features derived from pre-trained deep learning models. These features are employed in conjunction with a support vector machine for ADHD classification, yielding promising outcomes in the utilization of audio and text data for effective adult ADHD screening. Clinical impact: This research introduces a transformative approach in ADHD diagnosis, employing speech and text analysis to facilitate early and more accessible detection, particularly beneficial in areas with limited psychiatric resources. Clinical and Translational Impact Statement: The successful application of machine learning techniques in analyzing audio and text data for ADHD screening represents a significant advancement in mental health diagnostics, paving the way for its integration into clinical settings and potentially improving patient outcomes on a broader scale.
期刊介绍:
The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.