{"title":"Exploring the landscape of network security: a comparative analysis of attack detection strategies","authors":"P. Rajesh Kanna, P. Santhi","doi":"10.1007/s12652-024-04794-y","DOIUrl":null,"url":null,"abstract":"<p>The field of computer networking is experiencing rapid growth, accompanied by the swift advancement of internet tools. As a result, people are becoming more aware of the importance of network security. One of the primary concerns in ensuring security is the authority over domains, and network owners are striving to establish a common language to exchange security information and respond quickly to emerging threats. Given the increasing prevalence of various types of attacks, network security has become a significant challenge in the realm of computing. To address this, a multi-level distributed approach incorporating vulnerability identification, dimensioning, and countermeasures based on attack graphs has been developed. Implementing reconfigurable virtual systems as countermeasures significantly improves attack detection and mitigates the impact of attacks. Password-based authentication, for instance, can be susceptible to password cracking techniques, social engineering attacks, or data breaches that expose user credentials. Similarly, ensuring privacy during data transmission through encryption helps protect data from unauthorized access, but it does not guarantee the prevention of other types of attacks such as malware infiltration or insider threats. This research explores various techniques to achieve effective attack detection. Multiple research methods have been utilized and evaluated to identify the most suitable approach for network security and attack detection in the context of cloud computing. The analysis and implementation of diverse research studies demonstrate that the based signature intrusion detection method outperforms others in terms of precision, recall, F-measure, accuracy, reliability, and time complexity.</p>","PeriodicalId":14959,"journal":{"name":"Journal of Ambient Intelligence and Humanized Computing","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Humanized Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12652-024-04794-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
The field of computer networking is experiencing rapid growth, accompanied by the swift advancement of internet tools. As a result, people are becoming more aware of the importance of network security. One of the primary concerns in ensuring security is the authority over domains, and network owners are striving to establish a common language to exchange security information and respond quickly to emerging threats. Given the increasing prevalence of various types of attacks, network security has become a significant challenge in the realm of computing. To address this, a multi-level distributed approach incorporating vulnerability identification, dimensioning, and countermeasures based on attack graphs has been developed. Implementing reconfigurable virtual systems as countermeasures significantly improves attack detection and mitigates the impact of attacks. Password-based authentication, for instance, can be susceptible to password cracking techniques, social engineering attacks, or data breaches that expose user credentials. Similarly, ensuring privacy during data transmission through encryption helps protect data from unauthorized access, but it does not guarantee the prevention of other types of attacks such as malware infiltration or insider threats. This research explores various techniques to achieve effective attack detection. Multiple research methods have been utilized and evaluated to identify the most suitable approach for network security and attack detection in the context of cloud computing. The analysis and implementation of diverse research studies demonstrate that the based signature intrusion detection method outperforms others in terms of precision, recall, F-measure, accuracy, reliability, and time complexity.
期刊介绍:
The purpose of JAIHC is to provide a high profile, leading edge forum for academics, industrial professionals, educators and policy makers involved in the field to contribute, to disseminate the most innovative researches and developments of all aspects of ambient intelligence and humanized computing, such as intelligent/smart objects, environments/spaces, and systems. The journal discusses various technical, safety, personal, social, physical, political, artistic and economic issues. The research topics covered by the journal are (but not limited to):
Pervasive/Ubiquitous Computing and Applications
Cognitive wireless sensor network
Embedded Systems and Software
Mobile Computing and Wireless Communications
Next Generation Multimedia Systems
Security, Privacy and Trust
Service and Semantic Computing
Advanced Networking Architectures
Dependable, Reliable and Autonomic Computing
Embedded Smart Agents
Context awareness, social sensing and inference
Multi modal interaction design
Ergonomics and product prototyping
Intelligent and self-organizing transportation networks & services
Healthcare Systems
Virtual Humans & Virtual Worlds
Wearables sensors and actuators