Markéta Vlková-Žlebková, Fang Wei Yuen, Honour C McCann
{"title":"Evolving Archetypes: Learning from Pathogen Emergence on a Nonmodel Host.","authors":"Markéta Vlková-Žlebková, Fang Wei Yuen, Honour C McCann","doi":"10.1146/annurev-phyto-021622-095110","DOIUrl":null,"url":null,"abstract":"<p><p>Research initiatives undertaken in response to disease outbreaks accelerate our understanding of microbial evolution, mechanisms of virulence and resistance, and plant-pathogen coevolutionary interactions. The emergence and global spread of <i>Pseudomonas syringae</i> pv. <i>actinidiae</i> (Psa) on kiwifruit (<i>Actinidia chinensis</i>) showed that there are parallel paths to host adaptation and antimicrobial resistance evolution, accelerated by the movement of mobile elements. Significant progress has been made in identifying type 3 effectors required for virulence and recognition in <i>A. chinensis</i> and <i>Actinidia arguta</i>, broadening our understanding of how host-mediated selection shapes virulence. The rapid development of <i>Actinidia</i> genomics after the Psa3 pandemic began has also generated new insight into molecular mechanisms of immunity and resistance gene evolution in this recently domesticated, nonmodel host. These findings include the presence of close homologs of known resistance genes <i>RPM1</i> and <i>RPS2</i> as well as the novel expansion of CC<sub>G10</sub>-NLRs (nucleotide-binding leucine-rich repeats) in <i>Actinidia</i> spp. The advances and approaches developed during the pandemic response can be applied to new pathosystems and new outbreak events.</p>","PeriodicalId":8251,"journal":{"name":"Annual review of phytopathology","volume":" ","pages":"49-68"},"PeriodicalIF":9.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1146/annurev-phyto-021622-095110","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Research initiatives undertaken in response to disease outbreaks accelerate our understanding of microbial evolution, mechanisms of virulence and resistance, and plant-pathogen coevolutionary interactions. The emergence and global spread of Pseudomonas syringae pv. actinidiae (Psa) on kiwifruit (Actinidia chinensis) showed that there are parallel paths to host adaptation and antimicrobial resistance evolution, accelerated by the movement of mobile elements. Significant progress has been made in identifying type 3 effectors required for virulence and recognition in A. chinensis and Actinidia arguta, broadening our understanding of how host-mediated selection shapes virulence. The rapid development of Actinidia genomics after the Psa3 pandemic began has also generated new insight into molecular mechanisms of immunity and resistance gene evolution in this recently domesticated, nonmodel host. These findings include the presence of close homologs of known resistance genes RPM1 and RPS2 as well as the novel expansion of CCG10-NLRs (nucleotide-binding leucine-rich repeats) in Actinidia spp. The advances and approaches developed during the pandemic response can be applied to new pathosystems and new outbreak events.
期刊介绍:
The Annual Review of Phytopathology, established in 1963, covers major advancements in plant pathology, including plant disease diagnosis, pathogens, host-pathogen Interactions, epidemiology and ecology, breeding for resistance and plant disease management, and includes a special section on the development of concepts. The journal is now open access through Annual Reviews' Subscribe to Open program, with articles published under a CC BY license.