TEXT MINING UNTUK ANALISIS SENTIMEN REVIEW FILM MENGGUNAKAN ALGORITMA NAÏVE BAYES

Muhammad Haidar Rifki, Yustina Retno Wahyu Utami, Paulus Harsadi
{"title":"TEXT MINING UNTUK ANALISIS SENTIMEN REVIEW FILM MENGGUNAKAN ALGORITMA NAÏVE BAYES","authors":"Muhammad Haidar Rifki, Yustina Retno Wahyu Utami, Paulus Harsadi","doi":"10.32524/jusitik.v7i2.1168","DOIUrl":null,"url":null,"abstract":"In its development, information technology brought about many changes and advances in the context of everyday life. One of the benefits of information technology to process large amounts of data is text mining. A movie is a spectacle that can be done at a relaxed time. Currently, there are many movies that can be watched via the internet or cinema. Movies that are watched on the internet are sometimes charged to watch so that potential viewers before watching a movie will read comments from users who have watched the movie. Film business and its individual reviews cannot be separated and film review sites such as IMDb is a credible source of reviews posted in public forums. Movie comments are many and varied on the IMDB website, we can see comments based on the movie title. This causes users to have difficulty analyzing other users' comments. So, this study aims to analyze the sentiment of opinions from several comments from IMDB website users and will be classified using the naïve bayes classifier method. Sentiment analysis is a classification process to understand the opinions, interactions, and emotions of a document or text. Naïve Bayes is suitable for solving multi-class prediction problems. If its assumption of the independence of features holds true, it can perform better than other models and requires much less training data. In addition to the Naïve Bayes Classifier, TF-IDF technique is also used to change the shape of the document into several words. The results obtained by applying the Naïve Bayes method are 87,2% accuracy, 92,4% recall, 80,9% precision, and 12,8% error rate. \nKeywords : Classification, IMDb, Naïve Bayes, Sentiment Analysis","PeriodicalId":285276,"journal":{"name":"JuSiTik : Jurnal Sistem dan Teknologi Informasi Komunikasi","volume":"103 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JuSiTik : Jurnal Sistem dan Teknologi Informasi Komunikasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32524/jusitik.v7i2.1168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In its development, information technology brought about many changes and advances in the context of everyday life. One of the benefits of information technology to process large amounts of data is text mining. A movie is a spectacle that can be done at a relaxed time. Currently, there are many movies that can be watched via the internet or cinema. Movies that are watched on the internet are sometimes charged to watch so that potential viewers before watching a movie will read comments from users who have watched the movie. Film business and its individual reviews cannot be separated and film review sites such as IMDb is a credible source of reviews posted in public forums. Movie comments are many and varied on the IMDB website, we can see comments based on the movie title. This causes users to have difficulty analyzing other users' comments. So, this study aims to analyze the sentiment of opinions from several comments from IMDB website users and will be classified using the naïve bayes classifier method. Sentiment analysis is a classification process to understand the opinions, interactions, and emotions of a document or text. Naïve Bayes is suitable for solving multi-class prediction problems. If its assumption of the independence of features holds true, it can perform better than other models and requires much less training data. In addition to the Naïve Bayes Classifier, TF-IDF technique is also used to change the shape of the document into several words. The results obtained by applying the Naïve Bayes method are 87,2% accuracy, 92,4% recall, 80,9% precision, and 12,8% error rate. Keywords : Classification, IMDb, Naïve Bayes, Sentiment Analysis
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用奈维贝叶斯算法对电影评论进行情感分析的文本挖掘
信息技术在其发展过程中为日常生活带来了许多变化和进步。信息技术处理大量数据的好处之一就是文本挖掘。电影是一种可以在轻松时间观看的奇观。目前,有许多电影可以通过互联网或电影院观看。在互联网上观看的电影有时是收费的,因此潜在观众在观看电影之前会阅读看过该电影的用户的评论。电影业务和个人评论是分不开的,IMDb 等电影评论网站是在公共论坛上发布评论的可靠来源。在 IMDB 网站上,电影评论多种多样,我们可以根据电影标题看到评论。这导致用户难以分析其他用户的评论。因此,本研究旨在分析来自 IMDB 网站用户的多条评论的意见情感,并将使用奈维贝叶斯分类器方法进行分类。情感分析是一种了解文档或文本的观点、互动和情感的分类过程。奈维贝叶斯适用于解决多类预测问题。如果它的特征独立性假设成立,那么它就能比其他模型表现得更好,而且所需的训练数据也更少。除了奈伊夫贝叶斯分类器,TF-IDF 技术也用于将文档的形状改变为多个单词。应用奈伊夫贝叶斯方法得到的结果是:准确率 87.2%,召回率 92.4%,精确率 80.9%,错误率 12.8%。关键词:分类、IMDb、奈夫贝叶斯、情感分析
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integrasi TOPSIS dalam Evaluasi dan Peringkat Calon Legislatif TEXT MINING UNTUK ANALISIS SENTIMEN REVIEW FILM MENGGUNAKAN ALGORITMA NAÏVE BAYES Decision Support System for Motorcycle Credit Sales Using the Multi-Factor Evaluation Process Method at CV. Lestari Motorindo, Palembang Branch Penerapan Data Mining Untuk Klasifikasi Produk Terlaris Menggunakan Algoritma Naive Bayes Pada Bengkel Motor Analisis Perilaku Siswa pada Pembelajaran Daring Menggunakan k-Means Clustering dari Log Data Moodle pada SMPN 6 Salatiga
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1