{"title":"Evaluation of antibacterial activity on nanoline-array surfaces with different spacing","authors":"","doi":"10.1016/j.colsurfb.2024.114242","DOIUrl":null,"url":null,"abstract":"<div><p>Extensive research has been conducted on anti-biofouling or antibacterial surfaces, with nanostructured surfaces that mimic cicada and dragonfly wings emerging as promising candidates for mechano-bactericidal applications. These biomimetic nanostructured surfaces are capable of exerting a bactericidal effect by directly damaging the membranes of bacteria attached to nanostructures. Although research on bactericidal effect using various nanostructures have been conducted, no specific studies have yet reported on the antibacterial efficiency of the surface having nanoline array, especially regarding the spacing between nanolines. This study details the fabrication of nanoline array via ultraviolet (UV) molding with polyurethane acrylate (PUA), noted for its UV sensitivity and rapid curing, enabling the fabrication of precise and scalable nanoscale structures. Investigation into the nanoline array’s antibacterial effects against <em>Escherichia coli</em> (<em>E. coli</em>) and <em>Staphylococcus aureus</em> (<em>S. aureus</em>) reveals that nanoline spacing critically influences bacterial adherence and viability, with specific spacings enhancing antibacterial properties. Scanning electron microscopy (SEM) and confocal microscopy analyses show that surface topography significantly affects bacterial behavior, with specific spacings leading to varied bacterial responses, including membrane damage and altered attachment patterns. The study highlights the potential of nanoline array in fabricating surfaces with tailored antibacterial properties, emphasizing the importance of nanoscale design in influencing bacterial interaction and viability. We also confirm the relative mechanical rigidity of the nanoline array, which exhibits antibacterial effects, through both experimental observations and numerical analysis. This indicates our proposed nanoline-array surface could have potential future applications in mechanical anti-bacterial functions that require such structural robustness.</p></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776524005010","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Extensive research has been conducted on anti-biofouling or antibacterial surfaces, with nanostructured surfaces that mimic cicada and dragonfly wings emerging as promising candidates for mechano-bactericidal applications. These biomimetic nanostructured surfaces are capable of exerting a bactericidal effect by directly damaging the membranes of bacteria attached to nanostructures. Although research on bactericidal effect using various nanostructures have been conducted, no specific studies have yet reported on the antibacterial efficiency of the surface having nanoline array, especially regarding the spacing between nanolines. This study details the fabrication of nanoline array via ultraviolet (UV) molding with polyurethane acrylate (PUA), noted for its UV sensitivity and rapid curing, enabling the fabrication of precise and scalable nanoscale structures. Investigation into the nanoline array’s antibacterial effects against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) reveals that nanoline spacing critically influences bacterial adherence and viability, with specific spacings enhancing antibacterial properties. Scanning electron microscopy (SEM) and confocal microscopy analyses show that surface topography significantly affects bacterial behavior, with specific spacings leading to varied bacterial responses, including membrane damage and altered attachment patterns. The study highlights the potential of nanoline array in fabricating surfaces with tailored antibacterial properties, emphasizing the importance of nanoscale design in influencing bacterial interaction and viability. We also confirm the relative mechanical rigidity of the nanoline array, which exhibits antibacterial effects, through both experimental observations and numerical analysis. This indicates our proposed nanoline-array surface could have potential future applications in mechanical anti-bacterial functions that require such structural robustness.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.