Accelerating Li-Ion Diffusion in LiFePO4 by Polyanion Lattice Engineering.

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-10-10 DOI:10.1002/adma.202410482
Xinxin Wang, Anyang Yu, Tian Jiang, Shijun Yuan, Qi Fan, Qingyu Xu
{"title":"Accelerating Li-Ion Diffusion in LiFePO<sub>4</sub> by Polyanion Lattice Engineering.","authors":"Xinxin Wang, Anyang Yu, Tian Jiang, Shijun Yuan, Qi Fan, Qingyu Xu","doi":"10.1002/adma.202410482","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the widespread commercialization of LiFePO<sub>4</sub> as cathodes in lithium-ion batteries, the rigid 1D Li-ion diffusion channel along the [010] direction strongly limits its fast charge and discharge performance. Herein, lattice engineering is developed by the planar triangle BO<sub>3</sub> <sup>3-</sup> substitution on tetrahedron PO<sub>4</sub> <sup>3-</sup> to induce flexibility in the Li-ion diffusion channels, which are broadened simultaneously. The planar structure of BO<sub>3</sub> <sup>3-</sup> may further provide additional paths between the channels. With these synergetic contributions, LiFe(PO<sub>4</sub>)<sub>0.98</sub>(BO<sub>3</sub>)<sub>0.02</sub> shows the best performance, which delivers the high-rate capacity (66.8 mAh g<sup>-1</sup> at 50 C) and long cycle stability (ultra-low capacity loss of 0.003% every cycle at 10 C) at 25 °C. Furthermore, excellent rate performance (34.0 mAh g<sup>-1</sup> at 40 C) and capacity retention (no capacity loss after 2500 cycles at 10 C) at -20 °C are realized.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202410482","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the widespread commercialization of LiFePO4 as cathodes in lithium-ion batteries, the rigid 1D Li-ion diffusion channel along the [010] direction strongly limits its fast charge and discharge performance. Herein, lattice engineering is developed by the planar triangle BO3 3- substitution on tetrahedron PO4 3- to induce flexibility in the Li-ion diffusion channels, which are broadened simultaneously. The planar structure of BO3 3- may further provide additional paths between the channels. With these synergetic contributions, LiFe(PO4)0.98(BO3)0.02 shows the best performance, which delivers the high-rate capacity (66.8 mAh g-1 at 50 C) and long cycle stability (ultra-low capacity loss of 0.003% every cycle at 10 C) at 25 °C. Furthermore, excellent rate performance (34.0 mAh g-1 at 40 C) and capacity retention (no capacity loss after 2500 cycles at 10 C) at -20 °C are realized.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过多阳离子晶格工程加速磷酸铁锂中的锂离子扩散
尽管作为锂离子电池正极的 LiFePO4 已广泛商业化,但沿 [010] 方向的刚性一维锂离子扩散通道严重限制了其快速充放电性能。在这里,通过在四面体 PO4 3 上取代平面三角形 BO3 3,发展了晶格工程学,从而使锂离子扩散通道具有灵活性,并同时拓宽了锂离子扩散通道。BO3 3- 的平面结构可进一步提供通道之间的额外路径。在这些协同作用下,LiFe(PO4)0.98(BO3)0.02 表现出了最佳性能,在 25 °C时可提供高倍率容量(50 C 时为 66.8 mAh g-1)和长周期稳定性(10 C 时每周期 0.003% 的超低容量损失)。此外,在零下 20 °C时,它还具有出色的速率性能(40 °C时为 34.0 mAh g-1)和容量保持率(10 °C时循环 2500 次后无容量损失)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
3D Bioprinting of Liquid High-Cell-Proportion Bioinks in Liquid Granular Bath. A Self-Healing, Flowable, Yet Solid Electrolyte Suppresses Li-Metal Morphological Instabilities. Accelerating Li-Ion Diffusion in LiFePO4 by Polyanion Lattice Engineering. Domain Dynamics Response to Polarization Switching in Relaxor Ferroelectrics. Dual Fe/I Single-Atom Electrocatalyst for High-Performance Oxygen Reduction and Wide-Temperature Quasi-Solid-State Zn-Air Batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1