Dual Fe/I Single-Atom Electrocatalyst for High-Performance Oxygen Reduction and Wide-Temperature Quasi-Solid-State Zn-Air Batteries.

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-10-10 DOI:10.1002/adma.202412978
Meng Du, Bingxian Chu, Qichen Wang, Cheng Li, Yu Lu, Zhan Zhang, Xin Xiao, Cong-Qiao Xu, Meng Gu, Jun Li, Huan Pang, Qiang Xu
{"title":"Dual Fe/I Single-Atom Electrocatalyst for High-Performance Oxygen Reduction and Wide-Temperature Quasi-Solid-State Zn-Air Batteries.","authors":"Meng Du, Bingxian Chu, Qichen Wang, Cheng Li, Yu Lu, Zhan Zhang, Xin Xiao, Cong-Qiao Xu, Meng Gu, Jun Li, Huan Pang, Qiang Xu","doi":"10.1002/adma.202412978","DOIUrl":null,"url":null,"abstract":"<p><p>Oxygen reduction reaction (ORR) electrocatalysts are essential for widespread application of quasi-solid-state Zn-air batteries (ZABs), but the well-known Fe-N-C single-atom catalysts (SACs) suffer from low activity and stability because of unfavorable strong adsorption of oxygenated intermediates. Herein, the study synthesizes dual Fe/I single atoms anchored on N-doped carbon nanorods (Fe/I-N-CR) via a metal-organic framework (MOF)-mediated two-step tandem-pyrolysis method. Atomic-level I doping modulates the electronic structure of Fe-N<sub>x</sub> centers via the long-range electron delocalization effect. Benefitting from the synergistic effect of dual Fe/I single-atom sites and the structural merits of 1D nanorods, the Fe/I-N-CR catalyst shows excellent ORR activity and stability, superior to Pt/C and Fe or I SACs. When the Fe/I-N-CR is employed as cathode for quasi-solid-state ZABs, a high power density of 197.9 mW cm<sup>-2</sup> and an ultralong cycling lifespan of 280 h at 20 mA cm<sup>-2</sup> are both achieved, greatly exceeding those of commercial Pt/C+IrO<sub>2</sub> (119.1 mW cm<sup>-2</sup> and 47 h). In addition, wide-temperature adaptability and superior stability from -40 to 60 °C are realized for the Fe/I-N-CR-based quasi-solid-state ZABs. This work provides a MOF-mediated two-step tandem-pyrolysis strategy to engineer high-performance dual SACs with metal/nonmetal centers for ORR and sustainable ZABs.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202412978","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Oxygen reduction reaction (ORR) electrocatalysts are essential for widespread application of quasi-solid-state Zn-air batteries (ZABs), but the well-known Fe-N-C single-atom catalysts (SACs) suffer from low activity and stability because of unfavorable strong adsorption of oxygenated intermediates. Herein, the study synthesizes dual Fe/I single atoms anchored on N-doped carbon nanorods (Fe/I-N-CR) via a metal-organic framework (MOF)-mediated two-step tandem-pyrolysis method. Atomic-level I doping modulates the electronic structure of Fe-Nx centers via the long-range electron delocalization effect. Benefitting from the synergistic effect of dual Fe/I single-atom sites and the structural merits of 1D nanorods, the Fe/I-N-CR catalyst shows excellent ORR activity and stability, superior to Pt/C and Fe or I SACs. When the Fe/I-N-CR is employed as cathode for quasi-solid-state ZABs, a high power density of 197.9 mW cm-2 and an ultralong cycling lifespan of 280 h at 20 mA cm-2 are both achieved, greatly exceeding those of commercial Pt/C+IrO2 (119.1 mW cm-2 and 47 h). In addition, wide-temperature adaptability and superior stability from -40 to 60 °C are realized for the Fe/I-N-CR-based quasi-solid-state ZABs. This work provides a MOF-mediated two-step tandem-pyrolysis strategy to engineer high-performance dual SACs with metal/nonmetal centers for ORR and sustainable ZABs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高性能氧还原和宽温准固态锌-空气电池的双铁/铁-单原子电催化剂。
氧还原反应(ORR)电催化剂对准固态锌-空气电池(ZAB)的广泛应用至关重要,但众所周知的Fe-N-C单原子催化剂(SACs)由于对含氧中间产物的强吸附性不利而存在活性和稳定性低的问题。本研究通过金属有机框架(MOF)介导的两步串联热解方法,合成了锚定在掺杂 N 的碳纳米棒(Fe/I-N-CR)上的双 Fe/I 单原子。原子级 I 掺杂通过长程电子脱ocalization 效应调节了 Fe-Nx 中心的电子结构。得益于 Fe/I 双单原子位点的协同效应和一维纳米棒的结构优点,Fe/I-N-CR 催化剂表现出优异的 ORR 活性和稳定性,优于 Pt/C、Fe 或 I SAC。当把 Fe/I-N-CR 用作准固态 ZAB 的阴极时,可实现 197.9 mW cm-2 的高功率密度和 20 mA cm-2 下 280 h 的超长循环寿命,大大超过了商用 Pt/C+IrO2 (119.1 mW cm-2 和 47 h)。此外,基于 Fe/I-N-CR 的准固态 ZAB 实现了从 -40 到 60 °C 的宽温度适应性和卓越的稳定性。这项研究提供了一种以 MOF 为介导的两步串联热解策略,可设计出具有金属/非金属中心的高性能双 SAC,用于 ORR 和可持续 ZAB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
3D Bioprinting of Liquid High-Cell-Proportion Bioinks in Liquid Granular Bath. A Self-Healing, Flowable, Yet Solid Electrolyte Suppresses Li-Metal Morphological Instabilities. Accelerating Li-Ion Diffusion in LiFePO4 by Polyanion Lattice Engineering. Domain Dynamics Response to Polarization Switching in Relaxor Ferroelectrics. Dual Fe/I Single-Atom Electrocatalyst for High-Performance Oxygen Reduction and Wide-Temperature Quasi-Solid-State Zn-Air Batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1