Gaohui Li, Haining Yao, Boyuan Fu, Ke Chen, Katsuyoshi Kondoh, Nannan Chen, Min Wang
{"title":"Robust interfacial bonding achieved via phase separation induced by enhanced Al diffusion during AZ31/high-entropy alloy friction stir welding","authors":"Gaohui Li, Haining Yao, Boyuan Fu, Ke Chen, Katsuyoshi Kondoh, Nannan Chen, Min Wang","doi":"10.1016/j.jma.2024.09.010","DOIUrl":null,"url":null,"abstract":"Welding high-entropy alloy (HEA) to Mg alloy has gained increasing attention for multi-metal structure design, while intrinsic sluggish diffusion kinetics of HEA confines diffusion-controlled interfacial reactions and makes it challenging to establish robust metallurgical bonding. This study investigated welding of FeCoCrNiMn HEA to commercial AZ31 as a model combination to pioneer this field. Interfacial phase separation phenomenon was observed, with the diffusion accelerated by <em>in-situ</em> engineering a submicron-scale thick (∼400–500 nm) HEA nearby the interface into nanocrystalline-structure during friction stir welding. Abundant grain boundaries generated in this nanocrystalline-interlayer serve as diffusion short-circuits and energetically preferred nucleation-sites, which promoted Al in AZ31 to diffuse into HEA and triggered quick separation into body-centered cubic AlNi-type and tetragonal FeCr-type intermetallics. HEA and AZ31 were thus metallurgically bonded by these interfacial intermetallics. The joint shows exceptional strength in tensile lap-shear testing with fracture largely occurred within AZ31 rather than right along interface as commonly reported previously for dissimilar joints.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"75 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2024.09.010","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Welding high-entropy alloy (HEA) to Mg alloy has gained increasing attention for multi-metal structure design, while intrinsic sluggish diffusion kinetics of HEA confines diffusion-controlled interfacial reactions and makes it challenging to establish robust metallurgical bonding. This study investigated welding of FeCoCrNiMn HEA to commercial AZ31 as a model combination to pioneer this field. Interfacial phase separation phenomenon was observed, with the diffusion accelerated by in-situ engineering a submicron-scale thick (∼400–500 nm) HEA nearby the interface into nanocrystalline-structure during friction stir welding. Abundant grain boundaries generated in this nanocrystalline-interlayer serve as diffusion short-circuits and energetically preferred nucleation-sites, which promoted Al in AZ31 to diffuse into HEA and triggered quick separation into body-centered cubic AlNi-type and tetragonal FeCr-type intermetallics. HEA and AZ31 were thus metallurgically bonded by these interfacial intermetallics. The joint shows exceptional strength in tensile lap-shear testing with fracture largely occurred within AZ31 rather than right along interface as commonly reported previously for dissimilar joints.
期刊介绍:
The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.