Vanadium induces Ni-Co MOF formation from a NiCo LDH to catalytically enhance the MgH2 hydrogen storage performance

IF 15.8 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING Journal of Magnesium and Alloys Pub Date : 2025-02-03 DOI:10.1016/j.jma.2025.01.012
Zexuan Yang, Yazhou Wang, Xia Lin, Yongjin Zou, Cuili Xiang, Fen Xu, Lixian Sun, Yong Shen Chua
{"title":"Vanadium induces Ni-Co MOF formation from a NiCo LDH to catalytically enhance the MgH2 hydrogen storage performance","authors":"Zexuan Yang, Yazhou Wang, Xia Lin, Yongjin Zou, Cuili Xiang, Fen Xu, Lixian Sun, Yong Shen Chua","doi":"10.1016/j.jma.2025.01.012","DOIUrl":null,"url":null,"abstract":"Magnesium-based hydrogen storage materials, such as MgH<sub>2</sub>, have attracted considerable attention because of its superior hydrogen storage capacities, inexpensive, and excellent reversibility. However, their high thermodynamic stabilities and slow kinetics lead to relatively high desorption temperatures, which severely limit the wide application of MgH<sub>2</sub>. In this study, the inclusion of vanadium induced the formation Ni-Co metal–organic frameworks (MOF) from a NiCo layered double hydroxide (LDH), thereby increasing the number of defects and vacancies, and improving the hydrogen storage properties of MgH<sub>2</sub>. The synthesized NiCo-MOF/V-O-doped MgH<sub>2</sub> system demonstrates excellent hydrogen storage capacity. More specifically, 5 wt.% of H<sub>2</sub> was released over 20 min at a relatively low dehydrogenation temperature of 250 °C, and almost complete dehydrogenation was achieved at 300 °C for 5 min. In addition, at 125 °C, the hydrogen storage material absorbed 5.5 wt.% H<sub>2</sub> in 10 min. Furthermore, the activation energy of dehydrogenation was determined to be 69.588 ± 6.302 kJ ·mol<sup>−1</sup> which is significantly lower than that of the ball-milled MgH<sub>2</sub> (i.e., 118.649 ± 2.825 kJ ·mol<sup>−1</sup>). It was therefore inferred that during dehydrogenation process, a Mg<sub>2</sub>Ni/Mg<sub>2</sub>NiH<sub>4</sub> hydrogen pump is formed by Ni, while the V-H and Co-H bonds formed by Co and V during the reaction act synergistically to catalyze the absorption and desorption of hydrogen, thereby increasing the hydrogen storage capacity of MgH<sub>2</sub>. These experiments provide new perspectives on the commercial application of MgH<sub>2</sub>.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"27 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2025.01.012","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Magnesium-based hydrogen storage materials, such as MgH2, have attracted considerable attention because of its superior hydrogen storage capacities, inexpensive, and excellent reversibility. However, their high thermodynamic stabilities and slow kinetics lead to relatively high desorption temperatures, which severely limit the wide application of MgH2. In this study, the inclusion of vanadium induced the formation Ni-Co metal–organic frameworks (MOF) from a NiCo layered double hydroxide (LDH), thereby increasing the number of defects and vacancies, and improving the hydrogen storage properties of MgH2. The synthesized NiCo-MOF/V-O-doped MgH2 system demonstrates excellent hydrogen storage capacity. More specifically, 5 wt.% of H2 was released over 20 min at a relatively low dehydrogenation temperature of 250 °C, and almost complete dehydrogenation was achieved at 300 °C for 5 min. In addition, at 125 °C, the hydrogen storage material absorbed 5.5 wt.% H2 in 10 min. Furthermore, the activation energy of dehydrogenation was determined to be 69.588 ± 6.302 kJ ·mol−1 which is significantly lower than that of the ball-milled MgH2 (i.e., 118.649 ± 2.825 kJ ·mol−1). It was therefore inferred that during dehydrogenation process, a Mg2Ni/Mg2NiH4 hydrogen pump is formed by Ni, while the V-H and Co-H bonds formed by Co and V during the reaction act synergistically to catalyze the absorption and desorption of hydrogen, thereby increasing the hydrogen storage capacity of MgH2. These experiments provide new perspectives on the commercial application of MgH2.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Magnesium and Alloys
Journal of Magnesium and Alloys Engineering-Mechanics of Materials
CiteScore
20.20
自引率
14.80%
发文量
52
审稿时长
59 days
期刊介绍: The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.
期刊最新文献
Positive-negative shear asymmetry and anisotropy of a textured rolled plate of AZ31B Mg alloy under simple shear Effect of different metal-reinforcement phases on PEO discharge and coating growth behavior of AZ91 Mg-matrix composites An overview of the recent developments in biodegradable Mg-Zn alloy Potential of strain-integrated gas infusion (SIGI) casting on post-heat treatment kinetics of AZ91 magnesium alloy Vanadium induces Ni-Co MOF formation from a NiCo LDH to catalytically enhance the MgH2 hydrogen storage performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1