{"title":"An overview of the recent developments in biodegradable Mg-Zn alloy","authors":"Manas Ranjan Sahu, Akiko Yamamoto","doi":"10.1016/j.jma.2025.01.011","DOIUrl":null,"url":null,"abstract":"The increasing interest in Mg-Zn binary alloys as temporary implant materials is attributed to their outstanding biocompatibility, biodegradability, and favourable mechanical properties. However, their application is constrained by high degradation rates in the physiological environment, resulting in the release of hydrogen gas and a rapid decline in mechanical properties. Additionally, the material's biocompatibility is contingent upon its degradability. Researchers have demonstrated that addressing these issues is possible through strategies such as controlling Zn content, employing thermo-mechanical processing to achieve suitable microstructures, and applying surface coatings. This manuscript provides a comprehensive review of published literature on Mg-Zn alloys, exploring the challenges and outlining future research directions in this field.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"168 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2025.01.011","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing interest in Mg-Zn binary alloys as temporary implant materials is attributed to their outstanding biocompatibility, biodegradability, and favourable mechanical properties. However, their application is constrained by high degradation rates in the physiological environment, resulting in the release of hydrogen gas and a rapid decline in mechanical properties. Additionally, the material's biocompatibility is contingent upon its degradability. Researchers have demonstrated that addressing these issues is possible through strategies such as controlling Zn content, employing thermo-mechanical processing to achieve suitable microstructures, and applying surface coatings. This manuscript provides a comprehensive review of published literature on Mg-Zn alloys, exploring the challenges and outlining future research directions in this field.
期刊介绍:
The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.