Yaxiong Ma , Yue Gao , Zengfa Dou , Guohua Huang , Xiaoke Ma
{"title":"Clustering dynamic networks by discriminating roles of vertices and capturing temporality with subsequent feature projection","authors":"Yaxiong Ma , Yue Gao , Zengfa Dou , Guohua Huang , Xiaoke Ma","doi":"10.1016/j.knosys.2024.112660","DOIUrl":null,"url":null,"abstract":"<div><div>Clustering dynamic networks has gained popularity due to the need to analyze complex systems that evolve over time, which cannot be fully characterized by traditional static models. It is highly non-trivial in comparison to clustering static network since it requires simultaneously to balance clustering accuracy and clustering drift, where clustering accuracy measures how clustering reflects structure of graph at current time, and clustering drift quantifies how clustering smoothes historical snapshot(s). In this study, we propose an algorithm <u><strong>c</strong></u>lustering <u><strong>d</strong></u>ynamic <u><strong>n</strong></u>etwork by <u><strong>d</strong></u>iscriminating <u><strong>r</strong></u>oles of vertices and <u><strong>c</strong></u>apturing <u><strong>t</strong></u>emporality with subsequent feature projection (<strong>CDN-DRCT</strong>). Specifically, clustering accuracy is achieved by factorizing high-order matrix of slice at current time, and vertices are divided into static and dynamic ones by the reconstruction errors. Finally, the proposed algorithm measures temporality of networks with a projection matrix, which connects subsequent features at the previous and current time, thereby enhancing clustering drift of clusters. In this case, temporality of dynamic networks is characterized from vertex and global level, providing a better way to balance clustering accuracy and clustering drift. Experimental results on 10 typical dynamic networks demonstrate the proposed algorithm is superior to baselines in terms of accuracy as well efficiency.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"305 ","pages":"Article 112660"},"PeriodicalIF":7.2000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124012942","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Clustering dynamic networks has gained popularity due to the need to analyze complex systems that evolve over time, which cannot be fully characterized by traditional static models. It is highly non-trivial in comparison to clustering static network since it requires simultaneously to balance clustering accuracy and clustering drift, where clustering accuracy measures how clustering reflects structure of graph at current time, and clustering drift quantifies how clustering smoothes historical snapshot(s). In this study, we propose an algorithm clustering dynamic network by discriminating roles of vertices and capturing temporality with subsequent feature projection (CDN-DRCT). Specifically, clustering accuracy is achieved by factorizing high-order matrix of slice at current time, and vertices are divided into static and dynamic ones by the reconstruction errors. Finally, the proposed algorithm measures temporality of networks with a projection matrix, which connects subsequent features at the previous and current time, thereby enhancing clustering drift of clusters. In this case, temporality of dynamic networks is characterized from vertex and global level, providing a better way to balance clustering accuracy and clustering drift. Experimental results on 10 typical dynamic networks demonstrate the proposed algorithm is superior to baselines in terms of accuracy as well efficiency.
期刊介绍:
Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.