Yuezhou Dong , Ke Qin , Shuang Liang , Ahmad Raza , Guangchun Luo
{"title":"GKA-GPT: Graphical knowledge aggregation for multiturn dialog generation","authors":"Yuezhou Dong , Ke Qin , Shuang Liang , Ahmad Raza , Guangchun Luo","doi":"10.1016/j.knosys.2024.112763","DOIUrl":null,"url":null,"abstract":"<div><div>In human interaction, effective communication relies on shared cognitive processes that facilitate the ability of individuals to comprehend the intended message of their interlocutors. Recent research in multiturn dialog generation seeks to emulate human-like responses by incorporating external knowledge into generative models to enhance language understanding. These models often utilize graphical representations of knowledge and employ graph neural networks (GNNs) to capture dialog semantics. However, sole reliance on external knowledge can fall short as human cognition integrates universal commonsense and personal knowledge, with the latter being derived from individual experiences and frequently disregarded. To remedy this, we propose GKA-GPT, a novel GNN-based approach that merges commonsense and personal knowledge into a comprehensive cognition graph to enhance the relevance and diversity of responses in multiturn dialog scenarios. Furthermore, GKA-GPT introduces a multigrained graphical knowledge aggregation mechanism for effective semantic information processing across various levels. Our experiments demonstrate that GKA-GPT outperforms existing baselines by generating more relevant and informative responses.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"309 ","pages":"Article 112763"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124013972","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In human interaction, effective communication relies on shared cognitive processes that facilitate the ability of individuals to comprehend the intended message of their interlocutors. Recent research in multiturn dialog generation seeks to emulate human-like responses by incorporating external knowledge into generative models to enhance language understanding. These models often utilize graphical representations of knowledge and employ graph neural networks (GNNs) to capture dialog semantics. However, sole reliance on external knowledge can fall short as human cognition integrates universal commonsense and personal knowledge, with the latter being derived from individual experiences and frequently disregarded. To remedy this, we propose GKA-GPT, a novel GNN-based approach that merges commonsense and personal knowledge into a comprehensive cognition graph to enhance the relevance and diversity of responses in multiturn dialog scenarios. Furthermore, GKA-GPT introduces a multigrained graphical knowledge aggregation mechanism for effective semantic information processing across various levels. Our experiments demonstrate that GKA-GPT outperforms existing baselines by generating more relevant and informative responses.
期刊介绍:
Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.