Progressive de-preference task-specific processing for generalizable person re-identification

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Knowledge-Based Systems Pub Date : 2024-11-29 DOI:10.1016/j.knosys.2024.112779
Haishun Du, Jieru Li, Linbing Cao, Xinxin Hao
{"title":"Progressive de-preference task-specific processing for generalizable person re-identification","authors":"Haishun Du,&nbsp;Jieru Li,&nbsp;Linbing Cao,&nbsp;Xinxin Hao","doi":"10.1016/j.knosys.2024.112779","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, domain generalization (DG) person re-identification (ReID) has attracted attention. Existing DG person ReID methods train on mixed datasets containing all source domains. However, these mixed datasets have huge inter-domain differences because of varying data distributions across different source domains. Such differences hinder models from learning domain-invariant representations, affecting generalization on unseen domains. To address this issue, we propose a progressive de-preference task-specific processing network (PDTP-Net) for DG person ReID. Initially, we design a progressive de-preference domain segmentation strategy to mitigate inter-domain differences by dividing multiple source domains into different phases, each comprising several training tasks. We then design a global and task-specific processing module that enhances extraction of domain-invariant features by integrating statistical information from other source domains. Finally, we design a multi-granularity attention module and a group-aware batch normalization strategy to ensure the features are more discriminative and better suited for person ReID tasks. The proposed model is validated using three DG person ReID experimental protocols: Protocol-1, Protocol-2, and leave-one-out experiments. On Protocol-1, the model improves mean average precision (mAP) and Rank-1 accuracy on all datasets by an average of 0.7% and 0.3%, respectively. On Protocol-2, the model improves mAP and Rank-1 accuracy on all datasets by an average of 2.525% and 2.725%, respectively. On the leave-one-out experiments, the model improves mAP and Rank-1 accuracy on all tasks by an average of 0.65% and 0.18%, respectively. The results on several popular datasets suggest that the model achieves state-of-the-art performance in DG person ReID.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"309 ","pages":"Article 112779"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124014138","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, domain generalization (DG) person re-identification (ReID) has attracted attention. Existing DG person ReID methods train on mixed datasets containing all source domains. However, these mixed datasets have huge inter-domain differences because of varying data distributions across different source domains. Such differences hinder models from learning domain-invariant representations, affecting generalization on unseen domains. To address this issue, we propose a progressive de-preference task-specific processing network (PDTP-Net) for DG person ReID. Initially, we design a progressive de-preference domain segmentation strategy to mitigate inter-domain differences by dividing multiple source domains into different phases, each comprising several training tasks. We then design a global and task-specific processing module that enhances extraction of domain-invariant features by integrating statistical information from other source domains. Finally, we design a multi-granularity attention module and a group-aware batch normalization strategy to ensure the features are more discriminative and better suited for person ReID tasks. The proposed model is validated using three DG person ReID experimental protocols: Protocol-1, Protocol-2, and leave-one-out experiments. On Protocol-1, the model improves mean average precision (mAP) and Rank-1 accuracy on all datasets by an average of 0.7% and 0.3%, respectively. On Protocol-2, the model improves mAP and Rank-1 accuracy on all datasets by an average of 2.525% and 2.725%, respectively. On the leave-one-out experiments, the model improves mAP and Rank-1 accuracy on all tasks by an average of 0.65% and 0.18%, respectively. The results on several popular datasets suggest that the model achieves state-of-the-art performance in DG person ReID.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
期刊最新文献
Progressive de-preference task-specific processing for generalizable person re-identification GKA-GPT: Graphical knowledge aggregation for multiturn dialog generation A novel spatio-temporal feature interleaved contrast learning neural network from a robustness perspective PSNet: A non-uniform illumination correction method for underwater images based pseudo-siamese network A novel domain-private-suppress meta-recognition network based universal domain generalization for machinery fault diagnosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1