A novel spatio-temporal feature interleaved contrast learning neural network from a robustness perspective

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Knowledge-Based Systems Pub Date : 2024-11-28 DOI:10.1016/j.knosys.2024.112788
Peng Liu , Yaodong Zhu , Yang Yang , Caixia Wang , Mingqiu Li , Haifang Cong , Guangyu Zhao , Han Yang
{"title":"A novel spatio-temporal feature interleaved contrast learning neural network from a robustness perspective","authors":"Peng Liu ,&nbsp;Yaodong Zhu ,&nbsp;Yang Yang ,&nbsp;Caixia Wang ,&nbsp;Mingqiu Li ,&nbsp;Haifang Cong ,&nbsp;Guangyu Zhao ,&nbsp;Han Yang","doi":"10.1016/j.knosys.2024.112788","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate traffic forecasting is critical to the effectiveness of intelligent transportation systems (ITS) and the development of smart cities.Achieving this goal requires efficient capture of heterogeneous interactions between spatial and temporal dependencies of traffic nodes.However, the robustness and predictive capacity of modeling systems are frequently compromised by the limitations inherent in fine-grained sensor data collection methodologies.Furthermore, the uneven distribution of data can exacerbate the degradation of the model’s predictive performance.To tackle these challenges, we introduce an innovative neural network that leverages spatio-temporal feature interlace contrast learning for daily traffic flow prediction.Our approach consists of two main parts: First, we propose a spatiotemporal position encoder that aims to provide a more balanced sample of training spatiotemporal data with mixed spatial coding to solve the problem of local heterogeneity in the data.Secondly, we employ a spatiotemporal interlace contrast graph structure generator and a specific structure and direction discriminator to discern various potential spatiotemporal features and categorize samples based on trends and consistency, thereby augmenting the system’s robustness and generalization capabilities. Extensive experiments and case studies across six real datasets demonstrate that our approach markedly enhances the prediction accuracy of the baseline model and introduces novel prediction strategies aimed at boosting the system’s robustness.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"309 ","pages":"Article 112788"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124014229","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate traffic forecasting is critical to the effectiveness of intelligent transportation systems (ITS) and the development of smart cities.Achieving this goal requires efficient capture of heterogeneous interactions between spatial and temporal dependencies of traffic nodes.However, the robustness and predictive capacity of modeling systems are frequently compromised by the limitations inherent in fine-grained sensor data collection methodologies.Furthermore, the uneven distribution of data can exacerbate the degradation of the model’s predictive performance.To tackle these challenges, we introduce an innovative neural network that leverages spatio-temporal feature interlace contrast learning for daily traffic flow prediction.Our approach consists of two main parts: First, we propose a spatiotemporal position encoder that aims to provide a more balanced sample of training spatiotemporal data with mixed spatial coding to solve the problem of local heterogeneity in the data.Secondly, we employ a spatiotemporal interlace contrast graph structure generator and a specific structure and direction discriminator to discern various potential spatiotemporal features and categorize samples based on trends and consistency, thereby augmenting the system’s robustness and generalization capabilities. Extensive experiments and case studies across six real datasets demonstrate that our approach markedly enhances the prediction accuracy of the baseline model and introduces novel prediction strategies aimed at boosting the system’s robustness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
期刊最新文献
GKA-GPT: Graphical knowledge aggregation for multiturn dialog generation A novel spatio-temporal feature interleaved contrast learning neural network from a robustness perspective Editorial Board Domain generalization via geometric adaptation over augmented data Gradient consistency strategy cooperative meta-feature learning for mixed domain generalized machine fault diagnosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1