Mengdi Xu, Yingjie Zhang, Biliang Lu, Zhaolin Liu, Qingshuai Sun
{"title":"A novel domain-private-suppress meta-recognition network based universal domain generalization for machinery fault diagnosis","authors":"Mengdi Xu, Yingjie Zhang, Biliang Lu, Zhaolin Liu, Qingshuai Sun","doi":"10.1016/j.knosys.2024.112775","DOIUrl":null,"url":null,"abstract":"<div><div>Domain generalization aims to generalize knowledge to target domains not seen during the training phase, even in domain gaps. However, in complex industrial settings, the emergence of new fault types is frequent. Concurrently, the rarity of these faults means that the data collected may not fully capture the entire range of potential fault conditions. As a result, it is challenging to ensure that there is an overlap between the label sets of the multi-source domains and the unseen target domains. This problem requires no prior knowledge of label sets, and it requires a model to learn from multi-source domains and perform well on unknown target domains. In this paper, we propose a Domain-Private-Suppress Meta-Recognition Network (DPSMR). It quantifies channel-level transferability to continuously enhance the robustness of channels to domain shifts, thereby promoting the generalization of a common label set. Using an enhanced meta-recognition calibration algorithm to avoid overconfidence in neural network predictions, we ensure the successful recognition of private samples. By employing dual-consistency loss, we reduce channel instability and facilitate learning domain-invariant features. Experimental results on two multi-domain datasets demonstrate that DPSMR outperforms the state-of-the-art methods.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"309 ","pages":"Article 112775"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124014096","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Domain generalization aims to generalize knowledge to target domains not seen during the training phase, even in domain gaps. However, in complex industrial settings, the emergence of new fault types is frequent. Concurrently, the rarity of these faults means that the data collected may not fully capture the entire range of potential fault conditions. As a result, it is challenging to ensure that there is an overlap between the label sets of the multi-source domains and the unseen target domains. This problem requires no prior knowledge of label sets, and it requires a model to learn from multi-source domains and perform well on unknown target domains. In this paper, we propose a Domain-Private-Suppress Meta-Recognition Network (DPSMR). It quantifies channel-level transferability to continuously enhance the robustness of channels to domain shifts, thereby promoting the generalization of a common label set. Using an enhanced meta-recognition calibration algorithm to avoid overconfidence in neural network predictions, we ensure the successful recognition of private samples. By employing dual-consistency loss, we reduce channel instability and facilitate learning domain-invariant features. Experimental results on two multi-domain datasets demonstrate that DPSMR outperforms the state-of-the-art methods.
期刊介绍:
Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.