Qingting Xu , Kaisong Song , Yangyang Kang , Chaoqun Liu , Yu Hong , Guodong Zhou
{"title":"DTDA: Dual-channel Triple-to-quintuple Data Augmentation for Comparative Opinion Quintuple Extraction","authors":"Qingting Xu , Kaisong Song , Yangyang Kang , Chaoqun Liu , Yu Hong , Guodong Zhou","doi":"10.1016/j.knosys.2024.112734","DOIUrl":null,"url":null,"abstract":"<div><div>Comparative Opinion Quintuple Extraction (COQE) is an essential task in sentiment analysis that entails the extraction of quintuples from comparative sentences. Each quintuple comprises a subject, an object, a shared aspect for comparison, a comparative opinion and a distinct preference. The prevalent reliance on extensively annotated datasets inherently constrains the efficiency of training. Manual data labeling is both time-consuming and labor-intensive, especially labeling quintuple data. Herein, we propose a <strong>D</strong>ual-channel <strong>T</strong>riple-to-quintuple <strong>D</strong>ata <strong>A</strong>ugmentation (<strong>DTDA</strong>) approach for the COQE task. In particular, we leverage ChatGPT to generate domain-specific triple data. Subsequently, we utilize these generated data and existing Aspect Sentiment Triplet Extraction (ASTE) data for separate preliminary fine-tuning. On this basis, we employ the two fine-tuned triple models for warm-up and construct a dual-channel quintuple model using the unabridged quintuples. We evaluate our approach on three benchmark datasets: Camera-COQE, Car-COQE and Ele-COQE. Our approach exhibits substantial improvements versus pipeline-based, joint, and T5-based baselines. Notably, the DTDA method significantly outperforms the best pipeline method, with exact match <span><math><mi>F</mi></math></span>1-score increasing by 10.32%, 8.97%, and 10.65% on Camera-COQE, Car-COQE and Ele-COQE, respectively. More importantly, our data augmentation method can adapt to any baselines. When integrated with the current SOTA UniCOQE method, it further improves performance by 0.34%, 1.65%, and 2.22%, respectively. We will make all related models and source code publicly available upon acceptance.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"307 ","pages":"Article 112734"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124013686","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Comparative Opinion Quintuple Extraction (COQE) is an essential task in sentiment analysis that entails the extraction of quintuples from comparative sentences. Each quintuple comprises a subject, an object, a shared aspect for comparison, a comparative opinion and a distinct preference. The prevalent reliance on extensively annotated datasets inherently constrains the efficiency of training. Manual data labeling is both time-consuming and labor-intensive, especially labeling quintuple data. Herein, we propose a Dual-channel Triple-to-quintuple Data Augmentation (DTDA) approach for the COQE task. In particular, we leverage ChatGPT to generate domain-specific triple data. Subsequently, we utilize these generated data and existing Aspect Sentiment Triplet Extraction (ASTE) data for separate preliminary fine-tuning. On this basis, we employ the two fine-tuned triple models for warm-up and construct a dual-channel quintuple model using the unabridged quintuples. We evaluate our approach on three benchmark datasets: Camera-COQE, Car-COQE and Ele-COQE. Our approach exhibits substantial improvements versus pipeline-based, joint, and T5-based baselines. Notably, the DTDA method significantly outperforms the best pipeline method, with exact match 1-score increasing by 10.32%, 8.97%, and 10.65% on Camera-COQE, Car-COQE and Ele-COQE, respectively. More importantly, our data augmentation method can adapt to any baselines. When integrated with the current SOTA UniCOQE method, it further improves performance by 0.34%, 1.65%, and 2.22%, respectively. We will make all related models and source code publicly available upon acceptance.
期刊介绍:
Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.