DTDA: Dual-channel Triple-to-quintuple Data Augmentation for Comparative Opinion Quintuple Extraction

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Knowledge-Based Systems Pub Date : 2024-11-20 DOI:10.1016/j.knosys.2024.112734
Qingting Xu , Kaisong Song , Yangyang Kang , Chaoqun Liu , Yu Hong , Guodong Zhou
{"title":"DTDA: Dual-channel Triple-to-quintuple Data Augmentation for Comparative Opinion Quintuple Extraction","authors":"Qingting Xu ,&nbsp;Kaisong Song ,&nbsp;Yangyang Kang ,&nbsp;Chaoqun Liu ,&nbsp;Yu Hong ,&nbsp;Guodong Zhou","doi":"10.1016/j.knosys.2024.112734","DOIUrl":null,"url":null,"abstract":"<div><div>Comparative Opinion Quintuple Extraction (COQE) is an essential task in sentiment analysis that entails the extraction of quintuples from comparative sentences. Each quintuple comprises a subject, an object, a shared aspect for comparison, a comparative opinion and a distinct preference. The prevalent reliance on extensively annotated datasets inherently constrains the efficiency of training. Manual data labeling is both time-consuming and labor-intensive, especially labeling quintuple data. Herein, we propose a <strong>D</strong>ual-channel <strong>T</strong>riple-to-quintuple <strong>D</strong>ata <strong>A</strong>ugmentation (<strong>DTDA</strong>) approach for the COQE task. In particular, we leverage ChatGPT to generate domain-specific triple data. Subsequently, we utilize these generated data and existing Aspect Sentiment Triplet Extraction (ASTE) data for separate preliminary fine-tuning. On this basis, we employ the two fine-tuned triple models for warm-up and construct a dual-channel quintuple model using the unabridged quintuples. We evaluate our approach on three benchmark datasets: Camera-COQE, Car-COQE and Ele-COQE. Our approach exhibits substantial improvements versus pipeline-based, joint, and T5-based baselines. Notably, the DTDA method significantly outperforms the best pipeline method, with exact match <span><math><mi>F</mi></math></span>1-score increasing by 10.32%, 8.97%, and 10.65% on Camera-COQE, Car-COQE and Ele-COQE, respectively. More importantly, our data augmentation method can adapt to any baselines. When integrated with the current SOTA UniCOQE method, it further improves performance by 0.34%, 1.65%, and 2.22%, respectively. We will make all related models and source code publicly available upon acceptance.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"307 ","pages":"Article 112734"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124013686","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Comparative Opinion Quintuple Extraction (COQE) is an essential task in sentiment analysis that entails the extraction of quintuples from comparative sentences. Each quintuple comprises a subject, an object, a shared aspect for comparison, a comparative opinion and a distinct preference. The prevalent reliance on extensively annotated datasets inherently constrains the efficiency of training. Manual data labeling is both time-consuming and labor-intensive, especially labeling quintuple data. Herein, we propose a Dual-channel Triple-to-quintuple Data Augmentation (DTDA) approach for the COQE task. In particular, we leverage ChatGPT to generate domain-specific triple data. Subsequently, we utilize these generated data and existing Aspect Sentiment Triplet Extraction (ASTE) data for separate preliminary fine-tuning. On this basis, we employ the two fine-tuned triple models for warm-up and construct a dual-channel quintuple model using the unabridged quintuples. We evaluate our approach on three benchmark datasets: Camera-COQE, Car-COQE and Ele-COQE. Our approach exhibits substantial improvements versus pipeline-based, joint, and T5-based baselines. Notably, the DTDA method significantly outperforms the best pipeline method, with exact match F1-score increasing by 10.32%, 8.97%, and 10.65% on Camera-COQE, Car-COQE and Ele-COQE, respectively. More importantly, our data augmentation method can adapt to any baselines. When integrated with the current SOTA UniCOQE method, it further improves performance by 0.34%, 1.65%, and 2.22%, respectively. We will make all related models and source code publicly available upon acceptance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DTDA:用于比较意见五元提取的双通道三元对五元数据增强技术
比较意见五元组提取(COQE)是情感分析中的一项重要任务,需要从比较句中提取五元组。每个五元组都包括一个主语、一个宾语、一个用于比较的共同方面、一个比较意见和一个不同的偏好。普遍依赖广泛注释的数据集从本质上限制了训练的效率。人工标注数据既耗时又耗力,尤其是标注五元数据。在此,我们针对 COQE 任务提出了一种双通道三重到五重数据增强(DTDA)方法。特别是,我们利用 ChatGPT 生成特定领域的三倍数据。随后,我们利用这些生成的数据和现有的方面情感三重提取(ASTE)数据分别进行初步微调。在此基础上,我们使用两个微调后的三元组模型进行热身,并使用未删节的五元组构建双通道五元组模型。我们在三个基准数据集上评估了我们的方法:Camera-COQE、Car-COQE 和 Ele-COQE。与基于流水线的方法、联合方法和基于 T5 的基线方法相比,我们的方法有了很大的改进。值得注意的是,DTDA 方法明显优于最佳流水线方法,在 Camera-COQE、Car-COQE 和 Ele-COQE 上,精确匹配的 F1 分数分别提高了 10.32%、8.97% 和 10.65%。更重要的是,我们的数据增强方法可以适应任何基线。当与当前的 SOTA UniCOQE 方法集成时,其性能分别进一步提高了 0.34%、1.65% 和 2.22%。我们将在获得认可后公开所有相关模型和源代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
期刊最新文献
Progressive de-preference task-specific processing for generalizable person re-identification GKA-GPT: Graphical knowledge aggregation for multiturn dialog generation A novel spatio-temporal feature interleaved contrast learning neural network from a robustness perspective PSNet: A non-uniform illumination correction method for underwater images based pseudo-siamese network A novel domain-private-suppress meta-recognition network based universal domain generalization for machinery fault diagnosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1