Bridging the gap between text-to-SQL research and real-world applications: A unified all-in-one framework for text-to-SQL

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Knowledge-Based Systems Pub Date : 2024-11-12 DOI:10.1016/j.knosys.2024.112697
Mirae Han , Seongsik Park , Seulgi Kim , Harksoo Kim
{"title":"Bridging the gap between text-to-SQL research and real-world applications: A unified all-in-one framework for text-to-SQL","authors":"Mirae Han ,&nbsp;Seongsik Park ,&nbsp;Seulgi Kim ,&nbsp;Harksoo Kim","doi":"10.1016/j.knosys.2024.112697","DOIUrl":null,"url":null,"abstract":"<div><div>Existing text-to-SQL research assumes the availability of gold table when generating SQL queries. It is possible to effectively generate complex and difficult queries by leveraging information from the gold table. However, in real-world scenarios, determining which of the numerous tables in a database should be referenced is challenging. Therefore, existing models reveal a gap in achieving the core objective of <em>practicality</em> in text-to-SQL research. In response, we propose a practical framework that can effectively convert user questions into queries, even in scenarios where reference tables are not provided. By adding a phase to find tables, it can generate queries using only information from questions, mitigating the limitations that arise when restricting reference tables to a single one. We demonstrate that our methods are suitable for practical use in text-to-SQL systems by achieving performances comparable to those of existing models with simple structures.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"306 ","pages":"Article 112697"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124013315","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Existing text-to-SQL research assumes the availability of gold table when generating SQL queries. It is possible to effectively generate complex and difficult queries by leveraging information from the gold table. However, in real-world scenarios, determining which of the numerous tables in a database should be referenced is challenging. Therefore, existing models reveal a gap in achieving the core objective of practicality in text-to-SQL research. In response, we propose a practical framework that can effectively convert user questions into queries, even in scenarios where reference tables are not provided. By adding a phase to find tables, it can generate queries using only information from questions, mitigating the limitations that arise when restricting reference tables to a single one. We demonstrate that our methods are suitable for practical use in text-to-SQL systems by achieving performances comparable to those of existing models with simple structures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缩小文本到 SQL 研究与实际应用之间的差距:统一的文本到 SQL 一体化框架
现有的文本到 SQL 研究假定在生成 SQL 查询时有黄金表。通过利用黄金表中的信息,可以有效地生成复杂而困难的查询。然而,在现实世界中,确定应引用数据库中众多表中的哪些表是一项挑战。因此,现有模型在实现文本到 SQL 研究的实用性这一核心目标方面存在差距。为此,我们提出了一个实用的框架,即使在没有提供参考表的情况下,也能有效地将用户问题转化为查询。通过添加查找表的阶段,它可以仅使用问题中的信息生成查询,从而减轻了将参考表限制为单一参考表时产生的限制。我们证明了我们的方法适用于文本到 SQL 系统的实际应用,其性能可与结构简单的现有模型相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
期刊最新文献
Progressive de-preference task-specific processing for generalizable person re-identification GKA-GPT: Graphical knowledge aggregation for multiturn dialog generation A novel spatio-temporal feature interleaved contrast learning neural network from a robustness perspective PSNet: A non-uniform illumination correction method for underwater images based pseudo-siamese network A novel domain-private-suppress meta-recognition network based universal domain generalization for machinery fault diagnosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1