{"title":"A lightweight convolutional neural network for road surface classification under shadow interference","authors":"Ruichi Mao, Guangqiang Wu, Jian Wu, Xingyu Wang","doi":"10.1016/j.knosys.2024.112761","DOIUrl":null,"url":null,"abstract":"<div><div>The development of intelligent driving, especially in the intelligent control of active suspension, heavily relies on the predictive perception of upcoming road conditions. To achieve accurate real-time road surface classification and overcome shadow interference, a lightweight convolutional neural network (CNN) based on a novel data augmentation method is proposed and an improved cycle-consistent adversarial network (CycleGAN) is developed to generate shadowed pavement data. The CycleGAN network structure is optimized using the texture self-supervised (TSS) mechanism and the learned perceptual image patch similarity (LPIPS) function, with label smoothing applied during training. The images produced by this data augmentation method closely resemble real-world images. Furthermore, Efficient-MBConv, which offers the advantages of fewer parameters and higher precision, is proposed. Finally, the Light-EfficientNet architecture, based on Efficient-MBConv, is developed and trained on the augmented dataset. Compared with EfficientNet-B0, the number of parameters in Light-EfficientNet is reduced by 61.94 %. The Light-EfficientNet model trained with data augmentation demonstrates an average classification accuracy improvement of 5.76 % on the test set with shadows, compared with the model trained without data augmentation. This approach effectively reduces the impact of shadows on road classification at a lower cost, while also significantly reducing the computational resources required by the CNN, providing real-time and accurate road surface information for the control of active suspension height and damping.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"306 ","pages":"Article 112761"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124013959","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The development of intelligent driving, especially in the intelligent control of active suspension, heavily relies on the predictive perception of upcoming road conditions. To achieve accurate real-time road surface classification and overcome shadow interference, a lightweight convolutional neural network (CNN) based on a novel data augmentation method is proposed and an improved cycle-consistent adversarial network (CycleGAN) is developed to generate shadowed pavement data. The CycleGAN network structure is optimized using the texture self-supervised (TSS) mechanism and the learned perceptual image patch similarity (LPIPS) function, with label smoothing applied during training. The images produced by this data augmentation method closely resemble real-world images. Furthermore, Efficient-MBConv, which offers the advantages of fewer parameters and higher precision, is proposed. Finally, the Light-EfficientNet architecture, based on Efficient-MBConv, is developed and trained on the augmented dataset. Compared with EfficientNet-B0, the number of parameters in Light-EfficientNet is reduced by 61.94 %. The Light-EfficientNet model trained with data augmentation demonstrates an average classification accuracy improvement of 5.76 % on the test set with shadows, compared with the model trained without data augmentation. This approach effectively reduces the impact of shadows on road classification at a lower cost, while also significantly reducing the computational resources required by the CNN, providing real-time and accurate road surface information for the control of active suspension height and damping.
期刊介绍:
Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.