Domain generalization via geometric adaptation over augmented data

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Knowledge-Based Systems Pub Date : 2024-11-26 DOI:10.1016/j.knosys.2024.112765
Ali Atghaei, Mohammad Rahmati
{"title":"Domain generalization via geometric adaptation over augmented data","authors":"Ali Atghaei,&nbsp;Mohammad Rahmati","doi":"10.1016/j.knosys.2024.112765","DOIUrl":null,"url":null,"abstract":"<div><div>This article addresses the challenge of adapting deep learning models trained on specific datasets to effectively generalize to similar-class dataset with different underlying distributions. We introduce a novel deep representation learning method that takes into account both statistical and geometric properties of features for domain generalization. Our approach utilizes Fourier augmentation and Nyström estimation to evaluate the similarity between graphs derived from original and augmented data features. Furthermore, we employ a contrastive loss function to maintain proximity among samples belonging to the same class while ensuring separation between samples from different classes in the feature space. By minimizing these loss functions, our method aims to enhance model generalizability across diverse domains. Comprehensive experiments conducted on real-world benchmark datasets, including PACS, Office-Home, VLCS, Digits-DG and UTKFace, demonstrate the effectiveness of the proposed method. The results consistently indicate superior performance compared to other approaches under various conditions, underscoring its robustness in achieving improved generalization across domains.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"309 ","pages":"Article 112765"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124013996","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This article addresses the challenge of adapting deep learning models trained on specific datasets to effectively generalize to similar-class dataset with different underlying distributions. We introduce a novel deep representation learning method that takes into account both statistical and geometric properties of features for domain generalization. Our approach utilizes Fourier augmentation and Nyström estimation to evaluate the similarity between graphs derived from original and augmented data features. Furthermore, we employ a contrastive loss function to maintain proximity among samples belonging to the same class while ensuring separation between samples from different classes in the feature space. By minimizing these loss functions, our method aims to enhance model generalizability across diverse domains. Comprehensive experiments conducted on real-world benchmark datasets, including PACS, Office-Home, VLCS, Digits-DG and UTKFace, demonstrate the effectiveness of the proposed method. The results consistently indicate superior performance compared to other approaches under various conditions, underscoring its robustness in achieving improved generalization across domains.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强数据上的几何自适应域泛化
本文解决了在特定数据集上训练的深度学习模型的挑战,以有效地推广到具有不同底层分布的类似类数据集。我们提出了一种新的深度表示学习方法,该方法同时考虑了特征的统计和几何性质,用于领域泛化。我们的方法利用傅里叶增强和Nyström估计来评估从原始和增强数据特征派生的图之间的相似性。此外,我们采用对比损失函数来保持属于同一类别的样本之间的接近性,同时确保特征空间中不同类别的样本之间的分离。通过最小化这些损失函数,我们的方法旨在提高模型在不同领域的可泛化性。在PACS、Office-Home、VLCS、Digits-DG和UTKFace等实际基准数据集上进行的综合实验证明了该方法的有效性。结果一致表明,在各种条件下,与其他方法相比,其性能优越,强调了其在实现改进的跨域泛化方面的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
期刊最新文献
Progressive de-preference task-specific processing for generalizable person re-identification GKA-GPT: Graphical knowledge aggregation for multiturn dialog generation A novel spatio-temporal feature interleaved contrast learning neural network from a robustness perspective PSNet: A non-uniform illumination correction method for underwater images based pseudo-siamese network A novel domain-private-suppress meta-recognition network based universal domain generalization for machinery fault diagnosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1