A new graph-based clustering method with dual-feature regularization and Laplacian rank constraint

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Knowledge-Based Systems Pub Date : 2024-11-23 DOI:10.1016/j.knosys.2024.112738
Hengdong Zhu , Yingshan Shen , Choujun Zhan , Fu Lee Wang , Heng Weng , Tianyong Hao
{"title":"A new graph-based clustering method with dual-feature regularization and Laplacian rank constraint","authors":"Hengdong Zhu ,&nbsp;Yingshan Shen ,&nbsp;Choujun Zhan ,&nbsp;Fu Lee Wang ,&nbsp;Heng Weng ,&nbsp;Tianyong Hao","doi":"10.1016/j.knosys.2024.112738","DOIUrl":null,"url":null,"abstract":"<div><div>The performance of graph-based clustering is commonly limited by two-stage processing (Constructing and dividing similarity graph) and the quality of similar graphs. To this end, we propose a new graph-based clustering method with dual-feature regularization and Laplacian rank constraint. Specifically, our method reveals the clustering structure and unifies the two-stage process. It imposes a Laplacian rank constraint on the similarity graph to ensure that it has <span><math><mi>C</mi></math></span> connected components. In addition, a method based on dual-feature regularization is designed to capture local data feature information from both feature extraction and adaptive regression, and is applied to an accurate distance metric learning. A reweighting optimization is integrated to learn a high-quality robust similarity graph. Comprehensive experiments on Ecoli, Yale and Yeast datasets show that our method outperforms the existing graph-based clustering methods with an average improvement of about 4%, 5% and 7% on the evaluation metrics ACC, NMI and RI, respectively.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"309 ","pages":"Article 112738"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124013728","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The performance of graph-based clustering is commonly limited by two-stage processing (Constructing and dividing similarity graph) and the quality of similar graphs. To this end, we propose a new graph-based clustering method with dual-feature regularization and Laplacian rank constraint. Specifically, our method reveals the clustering structure and unifies the two-stage process. It imposes a Laplacian rank constraint on the similarity graph to ensure that it has C connected components. In addition, a method based on dual-feature regularization is designed to capture local data feature information from both feature extraction and adaptive regression, and is applied to an accurate distance metric learning. A reweighting optimization is integrated to learn a high-quality robust similarity graph. Comprehensive experiments on Ecoli, Yale and Yeast datasets show that our method outperforms the existing graph-based clustering methods with an average improvement of about 4%, 5% and 7% on the evaluation metrics ACC, NMI and RI, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
期刊最新文献
Progressive de-preference task-specific processing for generalizable person re-identification GKA-GPT: Graphical knowledge aggregation for multiturn dialog generation A novel spatio-temporal feature interleaved contrast learning neural network from a robustness perspective PSNet: A non-uniform illumination correction method for underwater images based pseudo-siamese network A novel domain-private-suppress meta-recognition network based universal domain generalization for machinery fault diagnosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1