Explainable next POI recommendation based on spatial–temporal disentanglement representation and pseudo profile generation

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Knowledge-Based Systems Pub Date : 2024-11-28 DOI:10.1016/j.knosys.2024.112784
Jun Zeng, Hongjin Tao, Junhao Wen, Min Gao
{"title":"Explainable next POI recommendation based on spatial–temporal disentanglement representation and pseudo profile generation","authors":"Jun Zeng,&nbsp;Hongjin Tao,&nbsp;Junhao Wen,&nbsp;Min Gao","doi":"10.1016/j.knosys.2024.112784","DOIUrl":null,"url":null,"abstract":"<div><div>The current research in Point-of-Interest (POI) recommendation primarily aims to decipher users’ transitional patterns to predict their future location visits. Traditional approaches often intertwine various features to model these check-in transitions, which inadvertently compromises the quality of the resulting representations. This issue is compounded in both industrial and academic settings, where user-generated textual data is frequently inaccessible or restricted due to privacy concerns. Such limitations in user profiles pose significant challenges to the effectiveness of subsequent applications. In response to these challenges, the recent rise of Large Language Models (LLMs) offers a novel perspective. Diverging from the conventional approach of leveraging LLMs for semantic-based next check-in predictions, our research investigates the potential of integrating LLMs with sequential recommendation systems. This integration aims to augment feature dimensions and facilitate the generation of explicit explanations. To this end, we introduce CrossDR-Gen, a Cross-sequence Location Disentanglement Representation methodology. CrossDR-Gen is specifically designed for next POI recommendation and explanation generation. It uniquely considers spatial and temporal factors in shaping check-in behaviors, offering a comprehensive global view of location transitions. Crucially, CrossDR-Gen utilizes LLMs for pseudo profile generation in scenarios with limited semantic context, thereby enriching user features without relying on additional textual profiles or conversational data. Our experiments on real-world datasets demonstrate that CrossDR-Gen not only excels in addressing cold-start scenarios but also showcases robust recommendation capabilities. These findings validate the effectiveness of our proposed cooperative paradigm between LLMs and sequential recommendation models, highlighting a promising avenue for future research in POI recommendation systems.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"309 ","pages":"Article 112784"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124014187","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The current research in Point-of-Interest (POI) recommendation primarily aims to decipher users’ transitional patterns to predict their future location visits. Traditional approaches often intertwine various features to model these check-in transitions, which inadvertently compromises the quality of the resulting representations. This issue is compounded in both industrial and academic settings, where user-generated textual data is frequently inaccessible or restricted due to privacy concerns. Such limitations in user profiles pose significant challenges to the effectiveness of subsequent applications. In response to these challenges, the recent rise of Large Language Models (LLMs) offers a novel perspective. Diverging from the conventional approach of leveraging LLMs for semantic-based next check-in predictions, our research investigates the potential of integrating LLMs with sequential recommendation systems. This integration aims to augment feature dimensions and facilitate the generation of explicit explanations. To this end, we introduce CrossDR-Gen, a Cross-sequence Location Disentanglement Representation methodology. CrossDR-Gen is specifically designed for next POI recommendation and explanation generation. It uniquely considers spatial and temporal factors in shaping check-in behaviors, offering a comprehensive global view of location transitions. Crucially, CrossDR-Gen utilizes LLMs for pseudo profile generation in scenarios with limited semantic context, thereby enriching user features without relying on additional textual profiles or conversational data. Our experiments on real-world datasets demonstrate that CrossDR-Gen not only excels in addressing cold-start scenarios but also showcases robust recommendation capabilities. These findings validate the effectiveness of our proposed cooperative paradigm between LLMs and sequential recommendation models, highlighting a promising avenue for future research in POI recommendation systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
期刊最新文献
Progressive de-preference task-specific processing for generalizable person re-identification GKA-GPT: Graphical knowledge aggregation for multiturn dialog generation A novel spatio-temporal feature interleaved contrast learning neural network from a robustness perspective PSNet: A non-uniform illumination correction method for underwater images based pseudo-siamese network A novel domain-private-suppress meta-recognition network based universal domain generalization for machinery fault diagnosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1