Everton F Baro, Luiz S Oliveira, Alceu de Souza Britto
{"title":"Predicting hospitalization with LLMs from health insurance data.","authors":"Everton F Baro, Luiz S Oliveira, Alceu de Souza Britto","doi":"10.1007/s11517-024-03251-4","DOIUrl":null,"url":null,"abstract":"<p><p>Predictions of hospitalizations can help in the development of applications for health insurance, hospitals, and medicine. The data collected by health insurance has potential that is not always explored, and extracting features from it for use in machine learning applications requires demanding processes and specialized knowledge. With the emergence of large language models (LLM) there are possibilities to use this data for a wide range of applications requiring little specialized knowledge. To do this, it is necessary to organize and prepare this data to be used by these models. Therefore, in this work, an approach is presented for using data from health insurance in LLMs with the objective of predict hospitalizations. As a result, pre-trained models were generated in Portuguese and English with health insurance data that can be used in several applications. To prove the effectiveness of the models, tests were carried out to predict hospitalizations in general and due to stroke. For hospitalizations in general, F1-Score = 87.8 and AUC = 0.955 were achieved, and for hospitalizations due to stroke, the best model achieved F1-Score = 88.7 and AUC of 0.964. Considering the potential for use, the models were made available to the scientific community.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03251-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Predictions of hospitalizations can help in the development of applications for health insurance, hospitals, and medicine. The data collected by health insurance has potential that is not always explored, and extracting features from it for use in machine learning applications requires demanding processes and specialized knowledge. With the emergence of large language models (LLM) there are possibilities to use this data for a wide range of applications requiring little specialized knowledge. To do this, it is necessary to organize and prepare this data to be used by these models. Therefore, in this work, an approach is presented for using data from health insurance in LLMs with the objective of predict hospitalizations. As a result, pre-trained models were generated in Portuguese and English with health insurance data that can be used in several applications. To prove the effectiveness of the models, tests were carried out to predict hospitalizations in general and due to stroke. For hospitalizations in general, F1-Score = 87.8 and AUC = 0.955 were achieved, and for hospitalizations due to stroke, the best model achieved F1-Score = 88.7 and AUC of 0.964. Considering the potential for use, the models were made available to the scientific community.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).