Advancement in medical report generation: current practices, challenges, and future directions.

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Medical & Biological Engineering & Computing Pub Date : 2024-12-21 DOI:10.1007/s11517-024-03265-y
Marwareed Rehman, Imran Shafi, Jamil Ahmad, Carlos Osorio Garcia, Alina Eugenia Pascual Barrera, Imran Ashraf
{"title":"Advancement in medical report generation: current practices, challenges, and future directions.","authors":"Marwareed Rehman, Imran Shafi, Jamil Ahmad, Carlos Osorio Garcia, Alina Eugenia Pascual Barrera, Imran Ashraf","doi":"10.1007/s11517-024-03265-y","DOIUrl":null,"url":null,"abstract":"<p><p>The correct analysis of medical images requires the medical knowledge and expertise of radiologists to understand, clarify, and explain complex patterns and diagnose diseases. After analyzing, radiologists write detailed and well-structured reports that contribute to the precise and timely diagnosis of patients. However, manually writing reports is often expensive and time-consuming, and it is difficult for radiologists to analyze medical images, particularly images with multiple views and perceptions. It is challenging to accurately diagnose diseases, and many methods are proposed to help radiologists, both traditional and deep learning-based. Automatic report generation is widely used to tackle this issue as it streamlines the process and lessens the burden of manual labeling of images. This paper introduces a systematic literature review with a focus on analyses and evaluating existing research on medical report generation. This SLR follows a proper protocol for the planning, reviewing, and reporting of the results. This review recognizes that the most commonly used deep learning models are encoder-decoder frameworks (45 articles), which provide an accuracy of around 92-95%. Transformers-based models (20 articles) are the second most established method and achieve an accuracy of around 91%. The remaining articles explored in this SLR are attention mechanisms (10), RNN-LSTM (10), Large language models (LLM-10), and graph-based methods (4) with promising results. However, these methods also face certain limitations such as overfitting, risk of bias, and high data dependency that impact their performance. The review not only highlights the strengths and challenges of these methods but also suggests ways to handle them in the future to increase the accuracy and timely generation of medical reports. The goal of this review is to direct radiologists toward methods that lessen their workload and provide precise medical diagnoses.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03265-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The correct analysis of medical images requires the medical knowledge and expertise of radiologists to understand, clarify, and explain complex patterns and diagnose diseases. After analyzing, radiologists write detailed and well-structured reports that contribute to the precise and timely diagnosis of patients. However, manually writing reports is often expensive and time-consuming, and it is difficult for radiologists to analyze medical images, particularly images with multiple views and perceptions. It is challenging to accurately diagnose diseases, and many methods are proposed to help radiologists, both traditional and deep learning-based. Automatic report generation is widely used to tackle this issue as it streamlines the process and lessens the burden of manual labeling of images. This paper introduces a systematic literature review with a focus on analyses and evaluating existing research on medical report generation. This SLR follows a proper protocol for the planning, reviewing, and reporting of the results. This review recognizes that the most commonly used deep learning models are encoder-decoder frameworks (45 articles), which provide an accuracy of around 92-95%. Transformers-based models (20 articles) are the second most established method and achieve an accuracy of around 91%. The remaining articles explored in this SLR are attention mechanisms (10), RNN-LSTM (10), Large language models (LLM-10), and graph-based methods (4) with promising results. However, these methods also face certain limitations such as overfitting, risk of bias, and high data dependency that impact their performance. The review not only highlights the strengths and challenges of these methods but also suggests ways to handle them in the future to increase the accuracy and timely generation of medical reports. The goal of this review is to direct radiologists toward methods that lessen their workload and provide precise medical diagnoses.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
期刊最新文献
Performance investigation of MVMD-MSI algorithm in frequency recognition for SSVEP-based brain-computer interface and its application in robotic arm control. Evaluation of a cognition-sensitive spatial virtual reality game for Alzheimer's disease. Advancement in medical report generation: current practices, challenges, and future directions. Automated measurement of cardiothoracic ratio based on semantic segmentation integration model using deep learning. Predicting hospitalization with LLMs from health insurance data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1