Emmanuel Tom, Abhijai Velluva, Anit Joseph, Tiju Thomas, Mizaj Shabil Sha, P. V Jithin, Deepu Thomas, Kishor Kumar Sadasivuni, Joji Kurian
{"title":"Tailoring the Electrochemical Properties of ZnS Electrodes via Cobalt Doping for Improved Supercapacitor Application","authors":"Emmanuel Tom, Abhijai Velluva, Anit Joseph, Tiju Thomas, Mizaj Shabil Sha, P. V Jithin, Deepu Thomas, Kishor Kumar Sadasivuni, Joji Kurian","doi":"10.1007/s11664-024-11535-6","DOIUrl":null,"url":null,"abstract":"<div><p>For practical uses, there has been a lot of interest in simple, inexpensive, and efficient synthesis of materials for supercapacitor applications. Pure and cobalt-doped zinc sulfide (Co-doped ZnS) powder samples were synthesized in this study using a straightforward co-precipitation process, and their electrochemical performance was examined. It was observed that, at a scan rate of 10 mV s<sup>−1</sup>, pure ZnS has a specific capacitance of only 460.7 F g<sup>−1</sup>; however, the Co-doping in ZnS increases it to 947.8 F g<sup>−1</sup> for the 5% Co-doped sample, Co (0.05): ZnS. The results suggest that Co-doping in ZnS increases the kinetics and rate of redox processes. The increase in electrochemical active sites brought about by integrating Co into ZnS increases the surface area and results in the sample's capacity for storage. The encouraging findings increase the likelihood of elemental doping with other transition metal elements to increase the energy storage capability of earth-abundant ZnS samples.</p></div>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":"54 1","pages":"451 - 461"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11664-024-11535-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11664-024-11535-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
For practical uses, there has been a lot of interest in simple, inexpensive, and efficient synthesis of materials for supercapacitor applications. Pure and cobalt-doped zinc sulfide (Co-doped ZnS) powder samples were synthesized in this study using a straightforward co-precipitation process, and their electrochemical performance was examined. It was observed that, at a scan rate of 10 mV s−1, pure ZnS has a specific capacitance of only 460.7 F g−1; however, the Co-doping in ZnS increases it to 947.8 F g−1 for the 5% Co-doped sample, Co (0.05): ZnS. The results suggest that Co-doping in ZnS increases the kinetics and rate of redox processes. The increase in electrochemical active sites brought about by integrating Co into ZnS increases the surface area and results in the sample's capacity for storage. The encouraging findings increase the likelihood of elemental doping with other transition metal elements to increase the energy storage capability of earth-abundant ZnS samples.
Stephanie Shiau, Sean S Brummel, Elizabeth M Kennedy, Karen Hermetz, Stephen A Spector, Paige L Williams, Deborah Kacanek, Renee Smith, Stacy S Drury, Allison Agwu, Angela Ellis, Kunjal Patel, George R Seage, Russell B Van Dyke, Carmen J Marsit
Greg S Gojanovich, Denise L Jacobson, Jennifer Jao, Jonathan S Russell, Russell B Van Dyke, Daniel E Libutti, Tanvi S Sharma, Mitchell E Geffner, Mariana Gerschenson
期刊介绍:
The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications.
Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field.
A journal of The Minerals, Metals & Materials Society.