Optimization of Sensor Morphology and Sensing Performance in a Non-enzymatic Graphene FET Biosensor for Detection of Biomolecules in Complex Analytes

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Electronic Materials Pub Date : 2024-10-21 DOI:10.1007/s11664-024-11531-w
V. N. Senthil Kumaran, M. Venkatesh, Abdulrahman Saad Alqahtani, Azath Mubarakali, P. Parthasarathy
{"title":"Optimization of Sensor Morphology and Sensing Performance in a Non-enzymatic Graphene FET Biosensor for Detection of Biomolecules in Complex Analytes","authors":"V. N. Senthil Kumaran,&nbsp;M. Venkatesh,&nbsp;Abdulrahman Saad Alqahtani,&nbsp;Azath Mubarakali,&nbsp;P. Parthasarathy","doi":"10.1007/s11664-024-11531-w","DOIUrl":null,"url":null,"abstract":"<div><p>Recent advances in ultrasensitive electrical biosensors using graphene nanostructures such as nanowalls and nanopores have increased the surface area-to-volume ratio. These structures provide signals at low biomolecule concentrations that are generally insufficient for vital measurements, especially in complex physiological analytes, making practical deployment difficult. A new, reproducible, and scalable chemical technique for constructing smooth graphene nanogrids enables molar biomolecule detection in field-effect transistor (FET) mode. We examine how pore morphology affects the sensing capability of label-free graphene nanoporous FET biosensors, aiming for sub-femtomolar detection limits with a good signal-to-noise ratio (SNR) in blood or urine serum. Despite problems including drain–source current sensitivity overlap due to high quantities of nonspecific antigens, our improved graphene nanogrid sensor detected hepatitis B (Hep-B) surface antigen in serum at sub-femtomolar levels. In serum containing 3 nM hepatitis C (Hep-C) as a nonspecific antigen, a pore diameter of 30 nm and length of 120 nm had the highest SNR and detected 0.25 fM Hep-B. We used a graphene nanogrid FET biosensor in heterodyne mode (80 kHz to 2 MHz) to quantify Hep-B down to 0.3 fM in blood using a probabilistic neural network (PNN) to reduce Debye screening effects. The performance of the PNN exceeded that of the polynomial fit and static neural network models by limiting quantification errors to 10%. Electrical resistance was linearly related to the Hep-C virus core antigen (HCVcAg) concentration (80–550 pg/mL) in real-time tests. After improvement of functionalization parameters, the SNR increased 70%, detecting 0.20 fM Hep-B virus molecules with 60% sensitivity and 6% standard deviation.</p></div>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":"54 1","pages":"285 - 299"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11664-024-11531-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in ultrasensitive electrical biosensors using graphene nanostructures such as nanowalls and nanopores have increased the surface area-to-volume ratio. These structures provide signals at low biomolecule concentrations that are generally insufficient for vital measurements, especially in complex physiological analytes, making practical deployment difficult. A new, reproducible, and scalable chemical technique for constructing smooth graphene nanogrids enables molar biomolecule detection in field-effect transistor (FET) mode. We examine how pore morphology affects the sensing capability of label-free graphene nanoporous FET biosensors, aiming for sub-femtomolar detection limits with a good signal-to-noise ratio (SNR) in blood or urine serum. Despite problems including drain–source current sensitivity overlap due to high quantities of nonspecific antigens, our improved graphene nanogrid sensor detected hepatitis B (Hep-B) surface antigen in serum at sub-femtomolar levels. In serum containing 3 nM hepatitis C (Hep-C) as a nonspecific antigen, a pore diameter of 30 nm and length of 120 nm had the highest SNR and detected 0.25 fM Hep-B. We used a graphene nanogrid FET biosensor in heterodyne mode (80 kHz to 2 MHz) to quantify Hep-B down to 0.3 fM in blood using a probabilistic neural network (PNN) to reduce Debye screening effects. The performance of the PNN exceeded that of the polynomial fit and static neural network models by limiting quantification errors to 10%. Electrical resistance was linearly related to the Hep-C virus core antigen (HCVcAg) concentration (80–550 pg/mL) in real-time tests. After improvement of functionalization parameters, the SNR increased 70%, detecting 0.20 fM Hep-B virus molecules with 60% sensitivity and 6% standard deviation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于复杂分析物中生物分子检测的非酶促石墨烯FET生物传感器的传感器形态和传感性能优化
使用石墨烯纳米结构(如纳米壁和纳米孔)的超灵敏电生物传感器的最新进展提高了其表面积与体积比。这些结构在低生物分子浓度下提供信号,通常不足以进行重要测量,特别是在复杂的生理分析中,这使得实际部署变得困难。一种新的、可重复的、可扩展的化学技术用于构建光滑的石墨烯纳米网格,使在场效应晶体管(FET)模式下的摩尔生物分子检测成为可能。我们研究了孔隙形态如何影响无标记石墨烯纳米多孔场效应晶体管生物传感器的传感能力,旨在实现亚飞摩尔检测限,在血液或尿液血清中具有良好的信噪比(SNR)。尽管由于大量非特异性抗原导致漏源电流敏感性重叠等问题,我们改进的石墨烯纳米网格传感器在亚飞摩尔水平检测血清中的乙型肝炎(Hep-B)表面抗原。在含有3 nM非特异性抗原的丙型肝炎(Hep-C)血清中,直径为30 nM、长度为120 nM的孔的信噪比最高,检测出0.25 fM的Hep-B。我们使用外差模式(80 kHz至2 MHz)的石墨烯纳米栅极场效应晶体管生物传感器,利用概率神经网络(PNN)将血液中的乙肝病毒量化到0.3 fM,以减少德拜筛选效应。通过将量化误差限制在10%以内,PNN的性能优于多项式拟合和静态神经网络模型。实时检测时,电阻与Hep-C病毒核心抗原(HCVcAg)浓度(80-550 pg/mL)呈线性相关。改进功能化参数后,信噪比提高70%,检测0.20 fM乙型肝炎病毒分子,灵敏度为60%,标准差为6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
Efficacy of baricitinib in treating severe alopecia areata: a retrospective study
IF 1.8 4区 医学Archives of Dermatological ResearchPub Date : 2024-11-09 DOI: 10.1007/s00403-024-03498-9
Wen-fei Li, Ying Tu, Zheng-hui Yang, Pi-yan Hua, Qiu-yan Yao, Hua Gu
Demographic and Clinical Features of 1,641 Patients with Alopecia Areata, Alopecia Totalis, and Alopecia Universalis: A Single-Center Retrospective Study.
IF 1 Skin Appendage DisordersPub Date : 2021-01-01 DOI: 10.1159/000510880
Tugba Kevser Uzuncakmak, Burhan Engin, Server Serdaroglu, Yalcin Tuzun
来源期刊
Journal of Electronic Materials
Journal of Electronic Materials 工程技术-材料科学:综合
CiteScore
4.10
自引率
4.80%
发文量
693
审稿时长
3.8 months
期刊介绍: The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications. Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field. A journal of The Minerals, Metals & Materials Society.
期刊最新文献
Improving the Seebeck Coefficient and Electrical Conductivity of Fe11Ti3Al6 by Substituting Fe with Cr. Time-Lapse Imaging of Bismuth Precipitation and Coarsening on the Surface of Sn-Ag-Cu-Bi Solder Joints After Thermal Cycling. In Situ Growth of Nanorod-Assembled SnWO4 via AACVD for ppb Level Xylene Gas Sensor Polymeric Biosensor Development for Electrochemical Analysis of Tartrazine and Methyl Orange Study on the Vibration Mechanism of the Core Components of an HVDC Filter Capacitor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1