Automatic steel girder inspection system for high-speed railway bridge using hybrid learning framework

IF 8.5 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer-Aided Civil and Infrastructure Engineering Pub Date : 2024-12-25 DOI:10.1111/mice.13409
Tao Xu, Yunpeng Wu, Yong Qin, Sihui Long, Zhen Yang, Fengxiang Guo
{"title":"Automatic steel girder inspection system for high-speed railway bridge using hybrid learning framework","authors":"Tao Xu, Yunpeng Wu, Yong Qin, Sihui Long, Zhen Yang, Fengxiang Guo","doi":"10.1111/mice.13409","DOIUrl":null,"url":null,"abstract":"The steel girder of high-speed railway bridges requires regular inspections to ensure bridge stability and provide a safe environment for railway operations. Unmanned aerial vehicle (UAV)-based inspection has great potential to become an efficient solution by offering superior aerial perspectives and mitigating safety concerns. Unfortunately, classic convolutional neural network (CNN) models suffer from limited detection accuracy or redundant model parameters, and existing CNN-based bridge inspection systems are only designed for a single visual task (e.g., bolt detection or rust parsing only). This paper develops a novel bi-task girder inspection network (i.e., BGInet) to recognize different types of surface defects on girder from UAV imagery. First, the network assembles an advanced detection branch that integrates the sparse attention module, extended efficient linear aggregation network, and RepConv to solve the small object with scarce samples and complete efficient bolt defect identification. Then, an innovative U-shape saliency parsing branch is integrated into this system to supplement the detection branch and parse the rust regions. Smoothly, a pixel-to-real-world mapping model utilizing critical UAV flight parameters is also developed and assembled to measure rust areas. Finally, extensive experiments conducted on the UAV-based bridge girder dataset show our method achieves better detection accuracy over the current advanced models yet remains a reasonably high inference speed. The superior performance illustrates the system can effectively turn UAV imagery into useful information.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"143 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13409","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The steel girder of high-speed railway bridges requires regular inspections to ensure bridge stability and provide a safe environment for railway operations. Unmanned aerial vehicle (UAV)-based inspection has great potential to become an efficient solution by offering superior aerial perspectives and mitigating safety concerns. Unfortunately, classic convolutional neural network (CNN) models suffer from limited detection accuracy or redundant model parameters, and existing CNN-based bridge inspection systems are only designed for a single visual task (e.g., bolt detection or rust parsing only). This paper develops a novel bi-task girder inspection network (i.e., BGInet) to recognize different types of surface defects on girder from UAV imagery. First, the network assembles an advanced detection branch that integrates the sparse attention module, extended efficient linear aggregation network, and RepConv to solve the small object with scarce samples and complete efficient bolt defect identification. Then, an innovative U-shape saliency parsing branch is integrated into this system to supplement the detection branch and parse the rust regions. Smoothly, a pixel-to-real-world mapping model utilizing critical UAV flight parameters is also developed and assembled to measure rust areas. Finally, extensive experiments conducted on the UAV-based bridge girder dataset show our method achieves better detection accuracy over the current advanced models yet remains a reasonably high inference speed. The superior performance illustrates the system can effectively turn UAV imagery into useful information.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.60
自引率
19.80%
发文量
146
审稿时长
1 months
期刊介绍: Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms. Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.
期刊最新文献
Automatic steel girder inspection system for high-speed railway bridge using hybrid learning framework Infrared thermography and 3D pavement surface unevenness measurement algorithm for damage assessment of concrete bridge decks Automatic classification of near-fault pulse-like ground motions Cover Image, Volume 40, Issue 1 Research on autonomous path planning and tracking control methods for unmanned electric shovels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1