Yong-Gang Zhao, Li-Hui Chen, Ming-Li Ye, Wei-Si Su, Chao Lei, Xin-Jie Jin, Yin Lu
{"title":"U(VI) removal on polymer adsorbents: Recent development and future challenges","authors":"Yong-Gang Zhao, Li-Hui Chen, Ming-Li Ye, Wei-Si Su, Chao Lei, Xin-Jie Jin, Yin Lu","doi":"10.1080/10643389.2024.2401215","DOIUrl":null,"url":null,"abstract":"The vigorous development of nuclear power is one of the main strategies to solve the energy crisis and environmental pollution due to clean and high energy density of nuclear energy. As the main nuclear fuel, uranium is not only the shortage of terrestrial resource but also pose potential threat to the environment. To figure out these dilemma, various polymers have been widely developed to remove U(VI) from wastewater or extract U(VI) from seawater due to abundant reactive sites, high adsorption efficiency, large surface areas and controlled porous structure. Herein, the recent advances concerning U(VI) removal from seawater or wastewater on various polymer-bearing adsorbents (<i>i.e.,</i> metal-organic frameworks (MOFs), covalent-organic frameworks (COFs) and the other polymers) were summarized at large. The effect of different modification methods, influencing factors and interaction mechanism of U(VI) on these polymers were reviewed in details. Finally, the current problems as well as future direction of various polymer adsorbents toward U(VI) removal was provided. The review hopefully provides high-efficiency polymer adsorbents for the removal of uranium from aqueous solution or natural seawater.","PeriodicalId":10823,"journal":{"name":"Critical Reviews in Environmental Science and Technology","volume":"4 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Environmental Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10643389.2024.2401215","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The vigorous development of nuclear power is one of the main strategies to solve the energy crisis and environmental pollution due to clean and high energy density of nuclear energy. As the main nuclear fuel, uranium is not only the shortage of terrestrial resource but also pose potential threat to the environment. To figure out these dilemma, various polymers have been widely developed to remove U(VI) from wastewater or extract U(VI) from seawater due to abundant reactive sites, high adsorption efficiency, large surface areas and controlled porous structure. Herein, the recent advances concerning U(VI) removal from seawater or wastewater on various polymer-bearing adsorbents (i.e., metal-organic frameworks (MOFs), covalent-organic frameworks (COFs) and the other polymers) were summarized at large. The effect of different modification methods, influencing factors and interaction mechanism of U(VI) on these polymers were reviewed in details. Finally, the current problems as well as future direction of various polymer adsorbents toward U(VI) removal was provided. The review hopefully provides high-efficiency polymer adsorbents for the removal of uranium from aqueous solution or natural seawater.
期刊介绍:
Two of the most pressing global challenges of our era involve understanding and addressing the multitude of environmental problems we face. In order to tackle them effectively, it is essential to devise logical strategies and methods for their control. Critical Reviews in Environmental Science and Technology serves as a valuable international platform for the comprehensive assessment of current knowledge across a wide range of environmental science topics.
Environmental science is a field that encompasses the intricate and fluid interactions between various scientific disciplines. These include earth and agricultural sciences, chemistry, biology, medicine, and engineering. Furthermore, new disciplines such as environmental toxicology and risk assessment have emerged in response to the increasing complexity of environmental challenges.
The purpose of Critical Reviews in Environmental Science and Technology is to provide a space for critical analysis and evaluation of existing knowledge in environmental science. By doing so, it encourages the advancement of our understanding and the development of effective solutions. This journal plays a crucial role in fostering international cooperation and collaboration in addressing the pressing environmental issues of our time.