U(VI) removal on polymer adsorbents: Recent development and future challenges

IF 11.4 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Critical Reviews in Environmental Science and Technology Pub Date : 2025-02-16 DOI:10.1080/10643389.2024.2401215
Yong-Gang Zhao, Li-Hui Chen, Ming-Li Ye, Wei-Si Su, Chao Lei, Xin-Jie Jin, Yin Lu
{"title":"U(VI) removal on polymer adsorbents: Recent development and future challenges","authors":"Yong-Gang Zhao, Li-Hui Chen, Ming-Li Ye, Wei-Si Su, Chao Lei, Xin-Jie Jin, Yin Lu","doi":"10.1080/10643389.2024.2401215","DOIUrl":null,"url":null,"abstract":"The vigorous development of nuclear power is one of the main strategies to solve the energy crisis and environmental pollution due to clean and high energy density of nuclear energy. As the main nuclear fuel, uranium is not only the shortage of terrestrial resource but also pose potential threat to the environment. To figure out these dilemma, various polymers have been widely developed to remove U(VI) from wastewater or extract U(VI) from seawater due to abundant reactive sites, high adsorption efficiency, large surface areas and controlled porous structure. Herein, the recent advances concerning U(VI) removal from seawater or wastewater on various polymer-bearing adsorbents (<i>i.e.,</i> metal-organic frameworks (MOFs), covalent-organic frameworks (COFs) and the other polymers) were summarized at large. The effect of different modification methods, influencing factors and interaction mechanism of U(VI) on these polymers were reviewed in details. Finally, the current problems as well as future direction of various polymer adsorbents toward U(VI) removal was provided. The review hopefully provides high-efficiency polymer adsorbents for the removal of uranium from aqueous solution or natural seawater.","PeriodicalId":10823,"journal":{"name":"Critical Reviews in Environmental Science and Technology","volume":"4 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Environmental Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10643389.2024.2401215","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The vigorous development of nuclear power is one of the main strategies to solve the energy crisis and environmental pollution due to clean and high energy density of nuclear energy. As the main nuclear fuel, uranium is not only the shortage of terrestrial resource but also pose potential threat to the environment. To figure out these dilemma, various polymers have been widely developed to remove U(VI) from wastewater or extract U(VI) from seawater due to abundant reactive sites, high adsorption efficiency, large surface areas and controlled porous structure. Herein, the recent advances concerning U(VI) removal from seawater or wastewater on various polymer-bearing adsorbents (i.e., metal-organic frameworks (MOFs), covalent-organic frameworks (COFs) and the other polymers) were summarized at large. The effect of different modification methods, influencing factors and interaction mechanism of U(VI) on these polymers were reviewed in details. Finally, the current problems as well as future direction of various polymer adsorbents toward U(VI) removal was provided. The review hopefully provides high-efficiency polymer adsorbents for the removal of uranium from aqueous solution or natural seawater.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在聚合物吸附剂上去除U(VI):最新进展和未来挑战
大力发展核能是解决核能清洁、高能量密度所带来的能源危机和环境污染的主要战略之一。铀作为主要的核燃料,不仅是陆地资源的短缺,而且对环境构成潜在威胁。为了解决这些难题,各种聚合物因其丰富的活性位点、高吸附效率、大表面积和可控的多孔结构而被广泛开发用于去除废水中的U(VI)或从海水中提取U(VI)。本文综述了各种含聚合物吸附剂(金属-有机框架(mof)、共价-有机框架(COFs)和其他聚合物)对海水或废水中U(VI)的去除研究进展。综述了不同改性方法、影响因素及U(VI)对这些聚合物的作用机理。最后,提出了目前各种高分子吸附剂在去除U(VI)方面存在的问题和未来的发展方向。本综述有望为高效聚合物吸附剂去除水中或天然海水中的铀提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
27.30
自引率
1.60%
发文量
64
审稿时长
2 months
期刊介绍: Two of the most pressing global challenges of our era involve understanding and addressing the multitude of environmental problems we face. In order to tackle them effectively, it is essential to devise logical strategies and methods for their control. Critical Reviews in Environmental Science and Technology serves as a valuable international platform for the comprehensive assessment of current knowledge across a wide range of environmental science topics. Environmental science is a field that encompasses the intricate and fluid interactions between various scientific disciplines. These include earth and agricultural sciences, chemistry, biology, medicine, and engineering. Furthermore, new disciplines such as environmental toxicology and risk assessment have emerged in response to the increasing complexity of environmental challenges. The purpose of Critical Reviews in Environmental Science and Technology is to provide a space for critical analysis and evaluation of existing knowledge in environmental science. By doing so, it encourages the advancement of our understanding and the development of effective solutions. This journal plays a crucial role in fostering international cooperation and collaboration in addressing the pressing environmental issues of our time.
期刊最新文献
Radiological dose from seafood ingestion; a global summary from 40 years of study Effects of rare earth elements in the aquatic environment: Implications for ecotoxicological testing Secondary organophosphate esters: A review of environmental source, occurrence, and human exposure U(VI) removal on polymer adsorbents: Recent development and future challenges Efficient chemoautotrophic carbon fixation in controlled systems: Influencing factors, regulatory strategies and application prospects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1