Dual-Scale Friction Dynamics Associated with Moiré Superlattices in Layered Materials

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2025-01-16 DOI:10.1002/adfm.202420760
Huizhong Bai, Guijin Zou, Hongwei Bao, Suzhi Li, Fei Ma, Huajian Gao
{"title":"Dual-Scale Friction Dynamics Associated with Moiré Superlattices in Layered Materials","authors":"Huizhong Bai, Guijin Zou, Hongwei Bao, Suzhi Li, Fei Ma, Huajian Gao","doi":"10.1002/adfm.202420760","DOIUrl":null,"url":null,"abstract":"The ultralow friction properties of 2D materials present significant potential for energy-saving application. Atomic force microscopy experiments on the moiré superlattice of stacked 2D materials reveal that, beyond atomic stick-slip dynamics, friction behaviors at the moiré scale introduce a new dominant energy dissipation mechanism. However, understanding these behaviors remains challenging due to the complex interplay between atomic and moiré scale effects. Here, through large-scale molecular dynamics simulations of a tip scanning on a graphene/h-BN heterostructure, it is demonstrated that transitions between stick-slip and smooth sliding behaviors can be tuned at both atomic and moiré scales. Specifically, atomic-scale friction behavior is governed by the commensurability of tip-surface contact, while moiré-scale friction behavior arises from a load-dependent competition between expulsive interactions at tip/surface-indentation region and adhesive interactions at tip/surface-ripple region. The moiré stick-slip behavior occurs due to the more rapid shift of the protruding domain wall region as the tip crossing it under higher load. Furthermore, greater stretching of graphene bonds during domain wall crossing enhances energy dissipation. This moiré stick-slip behavior persists, albeit attenuated, in tri-layer systems. This findings provide new insights into friction at multiple length scales and may inform future studies of friction in multilayer superlattices.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"37 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202420760","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The ultralow friction properties of 2D materials present significant potential for energy-saving application. Atomic force microscopy experiments on the moiré superlattice of stacked 2D materials reveal that, beyond atomic stick-slip dynamics, friction behaviors at the moiré scale introduce a new dominant energy dissipation mechanism. However, understanding these behaviors remains challenging due to the complex interplay between atomic and moiré scale effects. Here, through large-scale molecular dynamics simulations of a tip scanning on a graphene/h-BN heterostructure, it is demonstrated that transitions between stick-slip and smooth sliding behaviors can be tuned at both atomic and moiré scales. Specifically, atomic-scale friction behavior is governed by the commensurability of tip-surface contact, while moiré-scale friction behavior arises from a load-dependent competition between expulsive interactions at tip/surface-indentation region and adhesive interactions at tip/surface-ripple region. The moiré stick-slip behavior occurs due to the more rapid shift of the protruding domain wall region as the tip crossing it under higher load. Furthermore, greater stretching of graphene bonds during domain wall crossing enhances energy dissipation. This moiré stick-slip behavior persists, albeit attenuated, in tri-layer systems. This findings provide new insights into friction at multiple length scales and may inform future studies of friction in multilayer superlattices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
层状材料中与摩尔超晶格相关的双尺度摩擦动力学
二维材料的超低摩擦特性为节能应用提供了巨大潜力。对堆叠二维材料摩尔纹超格的原子力显微镜实验表明,除了原子粘滑动力学之外,摩尔纹尺度的摩擦行为还引入了一种新的主要能量耗散机制。然而,由于原子效应和莫尔雷尺度效应之间复杂的相互作用,理解这些行为仍然具有挑战性。本文通过对石墨烯/h-BN 异质结构上的尖端扫描进行大规模分子动力学模拟,证明了在原子尺度和摩尔纹尺度上,粘滑行为和平滑滑动行为之间的转换是可以调整的。具体来说,原子尺度的摩擦行为受针尖与表面接触的可比性支配,而摩尔尺度的摩擦行为则产生于针尖/表面-压痕区域的挤压相互作用与针尖/表面-劈裂区域的粘附相互作用之间与载荷相关的竞争。摩尔纹粘滑行为的产生是由于在较高载荷下针尖穿过突出域壁区域时,突出域壁区域会发生更快的移动。此外,在穿越畴壁时,石墨烯键的拉伸幅度更大,从而增强了能量耗散。这种摩尔粘滑行为在三层系统中持续存在,尽管有所减弱。这一发现为多长度尺度的摩擦提供了新的见解,并可能为未来多层超晶格摩擦的研究提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Janus Asymmetric Cellulosic Triboelectric Materials Enabled by Gradient Nano‐Doping Strategy A Hydrogel Engineered with Semiconductive MnPSe3 Nanosheets as an Integrative Sonosensitizer/Fenton‐Like Catalyst/Nutrient for Melanoma Postoperative Care Temperature‐Mediated Controllable Adhesive Hydrogels with Remarkable Wet Adhesion Properties Based on Dynamic Interchain Interactions Lattice Hydrogen Boosts CO Tolerance of Pd Anode Catalysts in High‐Temperature Proton Exchange Membrane Fuel Cells Fiber‐Reinforced Ultrathin Solid Polymer Electrolyte for Solid‐State Lithium‐Metal Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1