A Hydrogel Engineered with Semiconductive MnPSe3 Nanosheets as an Integrative Sonosensitizer/Fenton‐Like Catalyst/Nutrient for Melanoma Postoperative Care

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2025-01-30 DOI:10.1002/adfm.202417871
Xinxin Zhang, Jimin Huang, Jinzhou Huang, Zhe Shi, Huicong Niu, Yi Zheng, Xiao Wang, Chengtie Wu, Jiajie Chen, Ping Liu, Yufang Zhu
{"title":"A Hydrogel Engineered with Semiconductive MnPSe3 Nanosheets as an Integrative Sonosensitizer/Fenton‐Like Catalyst/Nutrient for Melanoma Postoperative Care","authors":"Xinxin Zhang, Jimin Huang, Jinzhou Huang, Zhe Shi, Huicong Niu, Yi Zheng, Xiao Wang, Chengtie Wu, Jiajie Chen, Ping Liu, Yufang Zhu","doi":"10.1002/adfm.202417871","DOIUrl":null,"url":null,"abstract":"The simultaneous inhibition of tumor recurrence and promotion of wound healing are critical for patients undergoing melanoma surgery. However, the development of an effective yet straightforward platform that meets the comprehensive therapeutic requirements of clinical melanoma postoperative care still remains a significant challenge. Herein, a 2D semiconductive MnPSe<jats:sub>3</jats:sub> nanosheets (MPS NSs)‐engineered sodium alginate (SA) hydrogel dressing (SA‐MPS) is developed. The MPS NSs, a member of the ternary transition metal phosphorous chalcogenides (TMPCs), are successfully prepared through an ultrasonic‐assisted liquid phase exfoliation approach from bulk MnPSe<jats:sub>3</jats:sub>. These nanosheets exhibit the integrative functions of sonosensitizers, Fenton‐like catalysts, glutathione (GSH) scavengers, and phosphorus (P)/selenium (Se)‐containing nutrients. In vitro and in vivo evaluations demonstrate that the SA‐MPS hydrogel dressing possesses excellent biocompatibility and is effective for combined sonodynamic/chemodynamic therapy (SDT/CDT) of tumors, with amplified reactive oxygen species (ROS) production. Additionally, it promotes skin regeneration in postoperative wounds by supplying bioactive P/Se elements. Hence, such a multifunctional SA‐MPS hydrogel dressing without complex integration offers great potential for suppressing postoperative melanoma recurrence while facilitating wound healing, making it a promising candidate for melanoma postoperative care.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"78 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202417871","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The simultaneous inhibition of tumor recurrence and promotion of wound healing are critical for patients undergoing melanoma surgery. However, the development of an effective yet straightforward platform that meets the comprehensive therapeutic requirements of clinical melanoma postoperative care still remains a significant challenge. Herein, a 2D semiconductive MnPSe3 nanosheets (MPS NSs)‐engineered sodium alginate (SA) hydrogel dressing (SA‐MPS) is developed. The MPS NSs, a member of the ternary transition metal phosphorous chalcogenides (TMPCs), are successfully prepared through an ultrasonic‐assisted liquid phase exfoliation approach from bulk MnPSe3. These nanosheets exhibit the integrative functions of sonosensitizers, Fenton‐like catalysts, glutathione (GSH) scavengers, and phosphorus (P)/selenium (Se)‐containing nutrients. In vitro and in vivo evaluations demonstrate that the SA‐MPS hydrogel dressing possesses excellent biocompatibility and is effective for combined sonodynamic/chemodynamic therapy (SDT/CDT) of tumors, with amplified reactive oxygen species (ROS) production. Additionally, it promotes skin regeneration in postoperative wounds by supplying bioactive P/Se elements. Hence, such a multifunctional SA‐MPS hydrogel dressing without complex integration offers great potential for suppressing postoperative melanoma recurrence while facilitating wound healing, making it a promising candidate for melanoma postoperative care.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Janus Asymmetric Cellulosic Triboelectric Materials Enabled by Gradient Nano‐Doping Strategy A Hydrogel Engineered with Semiconductive MnPSe3 Nanosheets as an Integrative Sonosensitizer/Fenton‐Like Catalyst/Nutrient for Melanoma Postoperative Care Temperature‐Mediated Controllable Adhesive Hydrogels with Remarkable Wet Adhesion Properties Based on Dynamic Interchain Interactions Lattice Hydrogen Boosts CO Tolerance of Pd Anode Catalysts in High‐Temperature Proton Exchange Membrane Fuel Cells Fiber‐Reinforced Ultrathin Solid Polymer Electrolyte for Solid‐State Lithium‐Metal Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1