Jinlong Wang, Yanhua Liu, Zhiting Wei, Tao Liu, Yicheng Li, Biying He, Bin Luo, Chenchen Cai, Song Zhang, Mingchao Chi, Changbo Shi, Shuangfei Wang, Shuangxi Nie
{"title":"Janus Asymmetric Cellulosic Triboelectric Materials Enabled by Gradient Nano‐Doping Strategy","authors":"Jinlong Wang, Yanhua Liu, Zhiting Wei, Tao Liu, Yicheng Li, Biying He, Bin Luo, Chenchen Cai, Song Zhang, Mingchao Chi, Changbo Shi, Shuangfei Wang, Shuangxi Nie","doi":"10.1002/adfm.202424185","DOIUrl":null,"url":null,"abstract":"The rapid development of wearable electronic devices has posed higher demands on the design strategies of advanced sensing materials. Multidimensional functionality and energy self‐sufficiency have consistently been focal points in the field of wearable sensing. The construction of biomimetic nanostructures in sensing materials can endow sensors with intrinsic response characteristics and derivative performance. Here, inspired by the Janus structure and function of human skin, a gradient nano‐doping strategy is proposed for developing cellulosic triboelectric materials with biomimetic‐ordered Janus asymmetric structures. This strategy integrates the complementary advantages of internal components and structures to meet the complex requirements of self‐powered sensing materials. The triboelectric material simultaneously achieves high electrical output power (2.37 W m<jats:sup>−2</jats:sup>), excellent mechanical properties (withstanding tensile forces over 20 080 times its weight), and thermal conductivity. The wearable self‐powered wireless sensing system designed accordingly demonstrates excellent sensitivity (27.3 kPa<jats:sup>−1</jats:sup>) and sustained performance fidelity (15 000 cycles), faithfully recording human motion training information. This research holds significant research value and practical implications for the material structure, mechanical properties, and application platforms of wearable electronic devices.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"45 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202424185","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid development of wearable electronic devices has posed higher demands on the design strategies of advanced sensing materials. Multidimensional functionality and energy self‐sufficiency have consistently been focal points in the field of wearable sensing. The construction of biomimetic nanostructures in sensing materials can endow sensors with intrinsic response characteristics and derivative performance. Here, inspired by the Janus structure and function of human skin, a gradient nano‐doping strategy is proposed for developing cellulosic triboelectric materials with biomimetic‐ordered Janus asymmetric structures. This strategy integrates the complementary advantages of internal components and structures to meet the complex requirements of self‐powered sensing materials. The triboelectric material simultaneously achieves high electrical output power (2.37 W m−2), excellent mechanical properties (withstanding tensile forces over 20 080 times its weight), and thermal conductivity. The wearable self‐powered wireless sensing system designed accordingly demonstrates excellent sensitivity (27.3 kPa−1) and sustained performance fidelity (15 000 cycles), faithfully recording human motion training information. This research holds significant research value and practical implications for the material structure, mechanical properties, and application platforms of wearable electronic devices.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.