{"title":"Influence of Position-Dependent Effective Mass on One-Dimensional Bose-Einstein Condensates Using the Von Roos Approach","authors":"Somia Miraoui, Abdelhakim Benkrane, Ahmed Hocine","doi":"10.1007/s00601-025-01985-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study quantum droplets in one dimension under the influence of spacetime curvature by redefining the momentum operator, resulting in a maximum length and a minimum momentum, consistent with anti-de Sitter space (AdS). By examining this effect through the <span>\\(\\alpha \\)</span> parameter on the exact solution of free quantum droplets, we found that the relationship between the number of atoms and the chemical potential differs from the ordinary case. Additionally, we discovered that the flat-top shape can disappear and transform into a Gaussian shape in the presence of the maximum length (minimum momentum). Moreover, we found that the interaction of quantum droplets with spacetime curvature causes them to have a larger size. We also studied this effect on the variational solution via Gaussian ansatz for small droplets, we concluded that <span>\\(\\alpha \\)</span> decreases the stability and self-localisation of the quantum droplets.\n</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":"66 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Few-Body Systems","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00601-025-01985-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study quantum droplets in one dimension under the influence of spacetime curvature by redefining the momentum operator, resulting in a maximum length and a minimum momentum, consistent with anti-de Sitter space (AdS). By examining this effect through the \(\alpha \) parameter on the exact solution of free quantum droplets, we found that the relationship between the number of atoms and the chemical potential differs from the ordinary case. Additionally, we discovered that the flat-top shape can disappear and transform into a Gaussian shape in the presence of the maximum length (minimum momentum). Moreover, we found that the interaction of quantum droplets with spacetime curvature causes them to have a larger size. We also studied this effect on the variational solution via Gaussian ansatz for small droplets, we concluded that \(\alpha \) decreases the stability and self-localisation of the quantum droplets.
期刊介绍:
The journal Few-Body Systems presents original research work – experimental, theoretical and computational – investigating the behavior of any classical or quantum system consisting of a small number of well-defined constituent structures. The focus is on the research methods, properties, and results characteristic of few-body systems. Examples of few-body systems range from few-quark states, light nuclear and hadronic systems; few-electron atomic systems and small molecules; and specific systems in condensed matter and surface physics (such as quantum dots and highly correlated trapped systems), up to and including large-scale celestial structures.
Systems for which an equivalent one-body description is available or can be designed, and large systems for which specific many-body methods are needed are outside the scope of the journal.
The journal is devoted to the publication of all aspects of few-body systems research and applications. While concentrating on few-body systems well-suited to rigorous solutions, the journal also encourages interdisciplinary contributions that foster common approaches and insights, introduce and benchmark the use of novel tools (e.g. machine learning) and develop relevant applications (e.g. few-body aspects in quantum technologies).