Impact of waste origin and post-treatment techniques on the composition and toxicity of biogas

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Science of the Total Environment Pub Date : 2025-02-05 DOI:10.1016/j.scitotenv.2025.178688
Carole Tanios , Sylvain Billet , Clémence Méausoone , Yann Landkocz , Cédric Gennequin , Madona Labaki , Bilal Nsouli , Antoine Aboukaïs , Fabrice Cazier , Edmond Abi-Aad
{"title":"Impact of waste origin and post-treatment techniques on the composition and toxicity of biogas","authors":"Carole Tanios ,&nbsp;Sylvain Billet ,&nbsp;Clémence Méausoone ,&nbsp;Yann Landkocz ,&nbsp;Cédric Gennequin ,&nbsp;Madona Labaki ,&nbsp;Bilal Nsouli ,&nbsp;Antoine Aboukaïs ,&nbsp;Fabrice Cazier ,&nbsp;Edmond Abi-Aad","doi":"10.1016/j.scitotenv.2025.178688","DOIUrl":null,"url":null,"abstract":"<div><div>The toxicity of real biogas on human lung cells exposed at the air-liquid interface (ALI) was studied for the first time. Real biogases were sampled on site at two biomethanation centers, one in France and the other in Lebanon. Biogas was produced from the organic component of household municipal waste (i.e., food/kitchen waste and green waste). The chemical analysis was performed by Gas Chromatography (GC) or by online analyzers, in situ or further after collection of the samples in Tedlar bags or adsorption on Tenax tubes. The real biogases were composed of CH<sub>4</sub> and CO<sub>2</sub>, NH<sub>3</sub>, H<sub>2</sub>S, and of some Volatile Organic Compounds, such as BTEX and terpenes. The main biogas components from the two selected biogas plants were closed due to the use of the same Valorga® process, whereas the concentrations of the secondary compounds depended on the origin and nature of waste and on the use of a biogas post-treatment. Green waste produced higher concentrations of terpenes. Moreover, the treatment by desulfurization and by activated charcoal decreased its content in sulfur compounds and BTEX, respectively. Then, the toxicity of the two biogases was investigated by RT-qPCR in human lung cell cultures (BEAS-2B) exposed using the ALI Vitrocell® exposure device. No cytotoxicity was detected in the exposed cells. A dose- and time-dependent induction of inflammation markers was observed at the gene level in relation to oxidative stress in BEAS-2B cells exposed to both biogases. These inductions were mainly higher after exposure to the biogas containing more secondary compounds, such as BTEX. In conclusion, this in vitro mechanistic study confirmed the importance of the post-treatment of the biogas to lower the concentration of secondary compounds. Indeed, elimination of some biogas impurities is essential to avoid high toxicity, for an ideal use of biogas for waste management and renewable energy production.</div></div>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"966 ","pages":"Article 178688"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048969725003225","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The toxicity of real biogas on human lung cells exposed at the air-liquid interface (ALI) was studied for the first time. Real biogases were sampled on site at two biomethanation centers, one in France and the other in Lebanon. Biogas was produced from the organic component of household municipal waste (i.e., food/kitchen waste and green waste). The chemical analysis was performed by Gas Chromatography (GC) or by online analyzers, in situ or further after collection of the samples in Tedlar bags or adsorption on Tenax tubes. The real biogases were composed of CH4 and CO2, NH3, H2S, and of some Volatile Organic Compounds, such as BTEX and terpenes. The main biogas components from the two selected biogas plants were closed due to the use of the same Valorga® process, whereas the concentrations of the secondary compounds depended on the origin and nature of waste and on the use of a biogas post-treatment. Green waste produced higher concentrations of terpenes. Moreover, the treatment by desulfurization and by activated charcoal decreased its content in sulfur compounds and BTEX, respectively. Then, the toxicity of the two biogases was investigated by RT-qPCR in human lung cell cultures (BEAS-2B) exposed using the ALI Vitrocell® exposure device. No cytotoxicity was detected in the exposed cells. A dose- and time-dependent induction of inflammation markers was observed at the gene level in relation to oxidative stress in BEAS-2B cells exposed to both biogases. These inductions were mainly higher after exposure to the biogas containing more secondary compounds, such as BTEX. In conclusion, this in vitro mechanistic study confirmed the importance of the post-treatment of the biogas to lower the concentration of secondary compounds. Indeed, elimination of some biogas impurities is essential to avoid high toxicity, for an ideal use of biogas for waste management and renewable energy production.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
期刊最新文献
Impact of waste origin and post-treatment techniques on the composition and toxicity of biogas Human intestinal enteroids for evaluating the persistence of infectious human norovirus in raw surface freshwater Grazing regulates soil water-holding functions via altering plant functional groups in the southern Qilian Mountains Projected impacts of future climate change on the aboveground biomass of seagrasses at global scale Assessment of the resilience factors associated with European green efficiency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1