A 3D Spatial Information Compression Based Deep Reinforcement Learning Technique for UAV Path Planning in Cluttered Environments

IF 5.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of Vehicular Technology Pub Date : 2025-02-10 DOI:10.1109/OJVT.2025.3540174
Zhipeng Wang;Soon Xin Ng;Mohammed El-Hajjar
{"title":"A 3D Spatial Information Compression Based Deep Reinforcement Learning Technique for UAV Path Planning in Cluttered Environments","authors":"Zhipeng Wang;Soon Xin Ng;Mohammed El-Hajjar","doi":"10.1109/OJVT.2025.3540174","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicles (UAVs) can be considered in many applications, such as wireless communication, logistics transportation, agriculture and disaster prevention. The flexible maneuverability of UAVs also means that the UAV often operates in complex 3D environments, which requires efficient and reliable path planning system support. However, as a limited resource platform, the UAV systems cannot support highly complex path planning algorithms in lots of scenarios. In this paper, we propose a 3D spatial information compression (3DSIC) based deep reinforcement learning (DRL) algorithm for UAV path planning in cluttered 3D environments. Specifically, the proposed algorithm compresses the 3D spatial information to 2D through 3DSIC, and then combines the compressed 2D environment information with the current UAV layer spatial information to train UAV agents for path planning using neural networks. Additionally, the proposed 3DSIC is a plug and use module that can be combined with various DRL frameworks such as Deep Q-Network (DQN) and deep deterministic policy gradient (DDPG). Our simulation results show that the training efficiency of 3DSIC-DQN is 4.028 times higher than that directly implementing DQN in a <inline-formula><tex-math>$100 \\times 100 \\times 50$</tex-math></inline-formula> 3D cluttered environment. Furthermore, the training efficiency of 3DSIC-DDPG is 3.9 times higher than the traditional DDPG in the same environment. Moreover, 3DSIC combined with fast recurrent stochastic value gradient (FRSVG), which can be considered as the most state-of-the-art DRL algorithm for UAV path planning, exhibits 2.35 times faster training speed compared with the original FRSVG algorithm.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"6 ","pages":"647-661"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10878448","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10878448/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Unmanned aerial vehicles (UAVs) can be considered in many applications, such as wireless communication, logistics transportation, agriculture and disaster prevention. The flexible maneuverability of UAVs also means that the UAV often operates in complex 3D environments, which requires efficient and reliable path planning system support. However, as a limited resource platform, the UAV systems cannot support highly complex path planning algorithms in lots of scenarios. In this paper, we propose a 3D spatial information compression (3DSIC) based deep reinforcement learning (DRL) algorithm for UAV path planning in cluttered 3D environments. Specifically, the proposed algorithm compresses the 3D spatial information to 2D through 3DSIC, and then combines the compressed 2D environment information with the current UAV layer spatial information to train UAV agents for path planning using neural networks. Additionally, the proposed 3DSIC is a plug and use module that can be combined with various DRL frameworks such as Deep Q-Network (DQN) and deep deterministic policy gradient (DDPG). Our simulation results show that the training efficiency of 3DSIC-DQN is 4.028 times higher than that directly implementing DQN in a $100 \times 100 \times 50$ 3D cluttered environment. Furthermore, the training efficiency of 3DSIC-DDPG is 3.9 times higher than the traditional DDPG in the same environment. Moreover, 3DSIC combined with fast recurrent stochastic value gradient (FRSVG), which can be considered as the most state-of-the-art DRL algorithm for UAV path planning, exhibits 2.35 times faster training speed compared with the original FRSVG algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
25
审稿时长
10 weeks
期刊最新文献
Infrastructure Assisted Autonomous Driving: Research, Challenges, and Opportunities A Comparison of Spherical Neural Networks for Surround-View Fisheye Image Semantic Segmentation A 3D Spatial Information Compression Based Deep Reinforcement Learning Technique for UAV Path Planning in Cluttered Environments 2024 Index IEEE Open Journal of Vehicular Technology Vol. 5 Design Issues of Hybrid Energy Storage Systems of Electric Vehicles According to Driving Profiles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1