Infrastructure Assisted Autonomous Driving: Research, Challenges, and Opportunities

IF 5.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of Vehicular Technology Pub Date : 2025-02-14 DOI:10.1109/OJVT.2025.3542213
Roshan George;Joseph Clancy;Tim Brophy;Ganesh Sistu;William O'Grady;Sunil Chandra;Fiachra Collins;Darragh Mullins;Edward Jones;Brian Deegan;Martin Glavin
{"title":"Infrastructure Assisted Autonomous Driving: Research, Challenges, and Opportunities","authors":"Roshan George;Joseph Clancy;Tim Brophy;Ganesh Sistu;William O'Grady;Sunil Chandra;Fiachra Collins;Darragh Mullins;Edward Jones;Brian Deegan;Martin Glavin","doi":"10.1109/OJVT.2025.3542213","DOIUrl":null,"url":null,"abstract":"Despite advancements in perception technology, achieving full autonomy in vehicles remains challenging partly due to limited situational awareness. Even with their sophisticated sensor arrays, autonomous vehicles often struggle to comprehend complex real-world environments due to the challenges associated with occlusion. A possible solution for addressing this limitation lies in the concept of vehicle-to-infrastructure cooperative driving, which enables vehicles to interact with various sensors implemented in the surrounding infrastructure. The infrastructure can share real-time data, such as traffic conditions, road hazards, and weather updates, facilitating safer and more efficient navigation. Within this framework, cooperative sensing is a crucial component, augmenting the onboard sensing capabilities of autonomous vehicles. Cooperative sensing surpasses traditional onboard sensors by leveraging a shared sensor network among vehicles and infrastructure. This approach mitigates challenges posed by occlusion, where objects are obscured from a vehicle's direct view. By pooling information from multiple sources, autonomous vehicles can gain a more comprehensive understanding of their surroundings, leading to enhanced safety and performance on the road. This study addresses a literature gap regarding information flow from real-world scenes to environmental models for cooperative V2I systems. It explores three core concepts essential for understanding the environment: sensing, perception, and mapping. This paper identifies the specific information required from infrastructure nodes, proposes an optimized sensor suite, discusses data processing algorithms, and investigates effective spatial model representations for cooperative sensing. This research informs the reader about the different challenges and opportunities associated with a V2I cooperative sensing system.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"6 ","pages":"662-716"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10887285","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10887285/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Despite advancements in perception technology, achieving full autonomy in vehicles remains challenging partly due to limited situational awareness. Even with their sophisticated sensor arrays, autonomous vehicles often struggle to comprehend complex real-world environments due to the challenges associated with occlusion. A possible solution for addressing this limitation lies in the concept of vehicle-to-infrastructure cooperative driving, which enables vehicles to interact with various sensors implemented in the surrounding infrastructure. The infrastructure can share real-time data, such as traffic conditions, road hazards, and weather updates, facilitating safer and more efficient navigation. Within this framework, cooperative sensing is a crucial component, augmenting the onboard sensing capabilities of autonomous vehicles. Cooperative sensing surpasses traditional onboard sensors by leveraging a shared sensor network among vehicles and infrastructure. This approach mitigates challenges posed by occlusion, where objects are obscured from a vehicle's direct view. By pooling information from multiple sources, autonomous vehicles can gain a more comprehensive understanding of their surroundings, leading to enhanced safety and performance on the road. This study addresses a literature gap regarding information flow from real-world scenes to environmental models for cooperative V2I systems. It explores three core concepts essential for understanding the environment: sensing, perception, and mapping. This paper identifies the specific information required from infrastructure nodes, proposes an optimized sensor suite, discusses data processing algorithms, and investigates effective spatial model representations for cooperative sensing. This research informs the reader about the different challenges and opportunities associated with a V2I cooperative sensing system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
25
审稿时长
10 weeks
期刊最新文献
Infrastructure Assisted Autonomous Driving: Research, Challenges, and Opportunities A Comparison of Spherical Neural Networks for Surround-View Fisheye Image Semantic Segmentation A 3D Spatial Information Compression Based Deep Reinforcement Learning Technique for UAV Path Planning in Cluttered Environments 2024 Index IEEE Open Journal of Vehicular Technology Vol. 5 Design Issues of Hybrid Energy Storage Systems of Electric Vehicles According to Driving Profiles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1