A Comparison of Spherical Neural Networks for Surround-View Fisheye Image Semantic Segmentation

IF 5.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of Vehicular Technology Pub Date : 2025-02-13 DOI:10.1109/OJVT.2025.3541891
Anam Manzoor;Reenu Mohandas;Anthony Scanlan;Eoin Martino Grua;Fiachra Collins;Ganesh Sistu;Ciarán Eising
{"title":"A Comparison of Spherical Neural Networks for Surround-View Fisheye Image Semantic Segmentation","authors":"Anam Manzoor;Reenu Mohandas;Anthony Scanlan;Eoin Martino Grua;Fiachra Collins;Ganesh Sistu;Ciarán Eising","doi":"10.1109/OJVT.2025.3541891","DOIUrl":null,"url":null,"abstract":"Please check and confirm whether the authors affiliation in the first The automotive industry has made significant strides in enhancing road safety and enabling automated driving features through advanced computer vision techniques. This is particularly true for short-range vehicle automation, where non-linear fisheye cameras are commonly used. However, these cameras are challenged by optical distortions, known as fisheye geometric distortions, which lead to object deformation within the image and significant pixel distortion, particularly at the image periphery. Based on the observation that fisheye and spherical images exhibit at least superficially similar geometric characteristics, we investigate the applicability of spherical models—including Spherical Convolutional Neural Networks (CNNs) and Spherical Vision Transformers (ViTs)—to fisheye images, even though fisheye images are not truly spherical. We perform our comparison using fisheye datasets—<italic>Woodscape, SynWoodscape, and SynCityscapes</i> in autonomous driving scenarios, with a specific focus on the ability of spherical methods (Spherical CNNs and ViTs) to manage fisheye distortions and compared them against traditional non-spherical methods. Our findings indicate that spherical methods effectively address fisheye distortions without needing extra data augmentations. This results in better mean Intersection over Union (mIoU) scores, pixel accuracy, and better surround-view perception than other modern approaches for fisheye semantic segmentation. However, we also find that spherical methods have a greater tendency to overfit smaller datasets compared with non-spherical models. These advancements highlight how non-linear camera images can take advantage of spherical approximations through spherical models in autonomous driving.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"6 ","pages":"717-740"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10884975","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10884975/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Please check and confirm whether the authors affiliation in the first The automotive industry has made significant strides in enhancing road safety and enabling automated driving features through advanced computer vision techniques. This is particularly true for short-range vehicle automation, where non-linear fisheye cameras are commonly used. However, these cameras are challenged by optical distortions, known as fisheye geometric distortions, which lead to object deformation within the image and significant pixel distortion, particularly at the image periphery. Based on the observation that fisheye and spherical images exhibit at least superficially similar geometric characteristics, we investigate the applicability of spherical models—including Spherical Convolutional Neural Networks (CNNs) and Spherical Vision Transformers (ViTs)—to fisheye images, even though fisheye images are not truly spherical. We perform our comparison using fisheye datasets—Woodscape, SynWoodscape, and SynCityscapes in autonomous driving scenarios, with a specific focus on the ability of spherical methods (Spherical CNNs and ViTs) to manage fisheye distortions and compared them against traditional non-spherical methods. Our findings indicate that spherical methods effectively address fisheye distortions without needing extra data augmentations. This results in better mean Intersection over Union (mIoU) scores, pixel accuracy, and better surround-view perception than other modern approaches for fisheye semantic segmentation. However, we also find that spherical methods have a greater tendency to overfit smaller datasets compared with non-spherical models. These advancements highlight how non-linear camera images can take advantage of spherical approximations through spherical models in autonomous driving.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
25
审稿时长
10 weeks
期刊最新文献
Infrastructure Assisted Autonomous Driving: Research, Challenges, and Opportunities A Comparison of Spherical Neural Networks for Surround-View Fisheye Image Semantic Segmentation A 3D Spatial Information Compression Based Deep Reinforcement Learning Technique for UAV Path Planning in Cluttered Environments 2024 Index IEEE Open Journal of Vehicular Technology Vol. 5 Design Issues of Hybrid Energy Storage Systems of Electric Vehicles According to Driving Profiles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1