{"title":"Enhancing hydrogen storage performance of magnesium-based materials: A review on nanostructuring and catalytic modification","authors":"Chengguang Lang, Xiangdong Yao","doi":"10.1016/j.jma.2025.01.015","DOIUrl":null,"url":null,"abstract":"Magnesium-based hydrogen storage materials are gaining significant attention due to their high hydrogen storage capacity and abundant availability. However, they encounter challenges, including slow hydrogen absorption and desorption kinetics and elevated operating temperatures. To address these issues, researchers have employed two main strategies: nanostructuring and the introduction of catalysts. This review provides a comprehensive overview of recent advancements in the modification of MgH<sub>2</sub>, emphasizing the impact of nanostructuring on enhancing hydrogen storage performance. It also examines the role of various catalysts, including carbon-based materials, transition metals and alloys, their oxides and halides, and composites, in improving hydrogen absorption and desorption characteristics. Studies indicate that these modifications can substantially lower the hydrogen absorption and desorption temperatures while enhancing kinetic performance. Furthermore, the effectiveness of catalysts is influenced by their type, dispersion, and interaction with magnesium-based materials and the catalytic mechanism, thereby elucidating the underlying catalytic mechanisms. The review concludes by discussing the current challenges and future directions in this field, aiming to provide theoretical insights for the practical application of magnesium-based hydrogen storage materials.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"3 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2025.01.015","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Magnesium-based hydrogen storage materials are gaining significant attention due to their high hydrogen storage capacity and abundant availability. However, they encounter challenges, including slow hydrogen absorption and desorption kinetics and elevated operating temperatures. To address these issues, researchers have employed two main strategies: nanostructuring and the introduction of catalysts. This review provides a comprehensive overview of recent advancements in the modification of MgH2, emphasizing the impact of nanostructuring on enhancing hydrogen storage performance. It also examines the role of various catalysts, including carbon-based materials, transition metals and alloys, their oxides and halides, and composites, in improving hydrogen absorption and desorption characteristics. Studies indicate that these modifications can substantially lower the hydrogen absorption and desorption temperatures while enhancing kinetic performance. Furthermore, the effectiveness of catalysts is influenced by their type, dispersion, and interaction with magnesium-based materials and the catalytic mechanism, thereby elucidating the underlying catalytic mechanisms. The review concludes by discussing the current challenges and future directions in this field, aiming to provide theoretical insights for the practical application of magnesium-based hydrogen storage materials.
期刊介绍:
The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.