Mansour Aouassa, Mohammed Bouabdellaoui, Walter Batista Pessoa, Andrei Tsarev, Mohammed Ibrahim, A. K. Aladim, K. M. A. Saron, Isabelle Berbezier
{"title":"SiGe Mie resonators grown on photoactive silicon nanodisks for high-performance photodetection","authors":"Mansour Aouassa, Mohammed Bouabdellaoui, Walter Batista Pessoa, Andrei Tsarev, Mohammed Ibrahim, A. K. Aladim, K. M. A. Saron, Isabelle Berbezier","doi":"10.1007/s10854-025-14447-1","DOIUrl":null,"url":null,"abstract":"<div><p>This article presents a successful fabrication method for hemispheric SiGe nanocrystal-based Mie resonators on photoactive silicon nanodisks on an insulator, achieved through an innovative and scalable approach. This method combines solid-state dewetting of an ultra-thin silicon-on-insulator film (UT-SOI) with germanium growth via molecular beam epitaxy (MBE). The results demonstrate the formation of Mie resonators on silicon nanodisks with precisely defined hemispherical shapes and a homogeneous distribution of germanium in the SiGe core. Three-dimensional finite-difference time-domain (3D FDTD) simulations of the optical properties of SiGe/Si Mie resonators emphasize their capability to generate very high optical loss. This discovery sets the stage for designing compact and high-performance photodetectors with efficient photoactive silicon nanodisks. Moreover, post-integration electrical characterization of these Mie resonators in a MIS-type photodetector reveals their ability to induce a photovoltaic effect while preserving fundamental electrical characteristics. These findings represent a significant advancement in both the fabrication and integration of SiGe-based Mie resonators into optoelectronic devices, opening new avenues in the realms of integrated photonics and advanced optoelectronic technologies.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"36 6","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-025-14447-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents a successful fabrication method for hemispheric SiGe nanocrystal-based Mie resonators on photoactive silicon nanodisks on an insulator, achieved through an innovative and scalable approach. This method combines solid-state dewetting of an ultra-thin silicon-on-insulator film (UT-SOI) with germanium growth via molecular beam epitaxy (MBE). The results demonstrate the formation of Mie resonators on silicon nanodisks with precisely defined hemispherical shapes and a homogeneous distribution of germanium in the SiGe core. Three-dimensional finite-difference time-domain (3D FDTD) simulations of the optical properties of SiGe/Si Mie resonators emphasize their capability to generate very high optical loss. This discovery sets the stage for designing compact and high-performance photodetectors with efficient photoactive silicon nanodisks. Moreover, post-integration electrical characterization of these Mie resonators in a MIS-type photodetector reveals their ability to induce a photovoltaic effect while preserving fundamental electrical characteristics. These findings represent a significant advancement in both the fabrication and integration of SiGe-based Mie resonators into optoelectronic devices, opening new avenues in the realms of integrated photonics and advanced optoelectronic technologies.
期刊介绍:
The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.