Selim Demirci , Durmuş Özkan Şahin , Sercan Demirci
{"title":"Design of the amorphous/crystalline TiO2 nanocomposites via machine learning for photocatalytic applications","authors":"Selim Demirci , Durmuş Özkan Şahin , Sercan Demirci","doi":"10.1016/j.mssp.2025.109460","DOIUrl":null,"url":null,"abstract":"<div><div>The ability to adjust the phase composition in titanium dioxide (TiO<sub>2</sub>) structures is crucial for customizing their properties to fit various applications. However, traditional approaches struggle to accurately forecast and regulate the balance between amorphous and crystalline phases within these materials. Here, we introduced an innovative method, utilizing machine learning (ML) techniques, to predict and classify the ratio of amorphous to crystalline phases in TiO<sub>2</sub> nanocomposites based on thermogravimetric analysis (TGA) data. Non-isothermal TGA experiments were conducted at heating rates of 1 °C/min, 5 °C/min, 10 °C/min, and 20 °C/min to obtain dataset. Various ML algorithms including Adaboost, Decision Trees (DT) Regression, Gaussian Process Regression (GPR), k-Nearest Neighbor Regression (KNN), Linear Regression (LR), Multi-Layer Perceptron (MLP), Random Forest Regression (RF), Support Vector Machine Regression (SVM) and XGBoost (XGB) were employed. The performances of models were evaluated by the R-squared (<span><math><mrow><msup><mi>R</mi><mn>2</mn></msup></mrow></math></span>), root mean square error (RMSE) and mean absolute error (MAE) metrics for training and test data. Among these, GPR, KNN, RF, and XGB emerged as the top-performing algorithms, with GPR achieving an exceptional R<sup>2</sup> value of 0.999 and the lowest error rates (RMSE: 2 × 10<sup>−4</sup>, MAE: 2.4 × 10<sup>−5</sup>). Thus, GPR was identified as the most successful regression model. As for classification part, the XGB algorithm achieved the highest accuracy of 99.9 % with DT, RF, and XGB also excelling in True Positive Rate (TPR) and False Positive Rate (FPR) metrics. These findings highlight the potential of ML techniques in optimizing phase composition prediction and classification for TiO<sub>2</sub> nanocomposites, thereby reducing timescales, cost, and rigorous calculations.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"192 ","pages":"Article 109460"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800125001970","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The ability to adjust the phase composition in titanium dioxide (TiO2) structures is crucial for customizing their properties to fit various applications. However, traditional approaches struggle to accurately forecast and regulate the balance between amorphous and crystalline phases within these materials. Here, we introduced an innovative method, utilizing machine learning (ML) techniques, to predict and classify the ratio of amorphous to crystalline phases in TiO2 nanocomposites based on thermogravimetric analysis (TGA) data. Non-isothermal TGA experiments were conducted at heating rates of 1 °C/min, 5 °C/min, 10 °C/min, and 20 °C/min to obtain dataset. Various ML algorithms including Adaboost, Decision Trees (DT) Regression, Gaussian Process Regression (GPR), k-Nearest Neighbor Regression (KNN), Linear Regression (LR), Multi-Layer Perceptron (MLP), Random Forest Regression (RF), Support Vector Machine Regression (SVM) and XGBoost (XGB) were employed. The performances of models were evaluated by the R-squared (), root mean square error (RMSE) and mean absolute error (MAE) metrics for training and test data. Among these, GPR, KNN, RF, and XGB emerged as the top-performing algorithms, with GPR achieving an exceptional R2 value of 0.999 and the lowest error rates (RMSE: 2 × 10−4, MAE: 2.4 × 10−5). Thus, GPR was identified as the most successful regression model. As for classification part, the XGB algorithm achieved the highest accuracy of 99.9 % with DT, RF, and XGB also excelling in True Positive Rate (TPR) and False Positive Rate (FPR) metrics. These findings highlight the potential of ML techniques in optimizing phase composition prediction and classification for TiO2 nanocomposites, thereby reducing timescales, cost, and rigorous calculations.
期刊介绍:
Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy.
Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications.
Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.